首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题如图1,过抛物线y2=2px(p>0)焦点F的一条直线和抛物线相交,交点的纵坐标为y1、y2.求证y1y2=-p2.证法1由已知,抛物线焦点F(2p,0),设过点F的直线与抛物线交于点A(x1,y1),B(x2,y2).若AB⊥x轴,则y1=p,y2=-p.所以y1y2=-p2.若AB与x轴不垂直,设直线AB的方程为y=k(x-2p),与y2=2px联立,得y2-2kpy-p2=0,因为y1、y2是方程的2根,所以y1y2=-p2.证法2因直线AB过定点F且与x轴不平行,所以设直线AB的方程为x=my 2p.代入y2=2px得y2-2pmy-p2=0,因为y1、y2是方程的2根,所以y1y2=-p2.法1是常规解法,法2设出直线方程,避免了讨论直线斜率的存在性,是一种很…  相似文献   

2.
对典型习题要构建自己的习题网络培养自己的思维模式,在建网过程中可深悟知识、练铸能力.一、一个常见问题的两种解法的比较问题:过抛物线y2=2px(p>0)的焦点F作一直线l交抛物线于A(x1,y1)、B(x2,y2)两点,则A、B的坐标之间有什么关系?解1:设直线l为y=k(x-2p)或x=2p.有x1 x2=p 2kp2或p;x1·x2=p42;y1 y2=2kp或0;y1y2=-p2解2:设直线l为x=ny 2p,x1 x2=2pn2 p;x1·x2=p42;y1 y2=2pn;y1·y2=-p2;说明:(1)解法1要讨论两种情况,这里选择解2的直线方程形式“x=ny 2p”可以表示过点F的除x轴以外的直线,避免对直线方程形式的讨论,一般有关过x轴上的…  相似文献   

3.
设直线l经过抛物线C:y2=2px(p>0)的焦点F,且与抛物线C交于A、B两点(直线AB的倾斜角为α),设A (x1,y1),B(x2,y2),O为坐标原点,准线方程为:x=-p/2,则关于抛物线C的焦点弦有以下九条常用的性质:(1)2x1x2=p/4;(2)y1y2=-p2.  相似文献   

4.
性质:过抛物线y2=2px的焦点的一条直线和抛物线相交,两个交点的纵坐标分别为y1、y2,则y1y2=-p2.证明:由题意知,直线若为x轴时,与题意不符.(1)当过焦点的直线不垂直于x轴时,设方程为y=k(x-p/2)(k≠0),即x=  相似文献   

5.
题:设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴,证明直线AC经过原点O.证明:如图1,记x轴与抛物线准线l的交点为E,过A作AD⊥l,D是垂足,则  相似文献   

6.
本文首先给出抛物线中的几组“定”结论,并举例说明它们在求解抛物线有关问题时的应用. 结论1 过抛物线y2=2px(p >0)的焦点F的直线l交抛物线于A(x1,y1)、B(x2,y2)两点,设|FA|=m,|FB|=n,O为原点,则有:(1)x1x2=p2/4;(2)y1y2=-p2;(3)kOAkOB=-4; (4)1/m+1/n=2/p.证明略.  相似文献   

7.
定理过点(k,0)作直线AB和抛物线y2=2px(p>0)交于A(x1,y1)、B(x2,y2)两点,则有x1x2=k2,y1y2=-2pk.证明设直线AB的方程为x=my+k,代入y2=2px,有y2-2pmy-2pk=0.因为直线AB与抛物线相交于A(x1,y1)、B(x2,y2)两点,于是y1y2=-2pk.由y21y22=4p2x1x2,得到x1x2=y21y224p2=4p2k24p2=k2.推论(焦点弦定理)若AB是过抛物线y2=2px(p>0)的焦点的弦,且A(x1,y1),B(x2,y2),则有y1y2=-p2,x1x2=p24.在解决某些与抛物线相关问题的时候,应用该定理和推论的内容,能简洁、快速地解题,同时也能达到优化解题过程的目的.例1如图1所示,线段AB过x轴正半轴上一点M(m,0…  相似文献   

8.
本文将对以下两个与抛物线有关的命题进行探究.命题1在抛物线y2=2px(p>0)中,过顶点O作两直线交抛物线于A、B两点,若(OA|→). (DB|→)=0,则直线AB过x轴上一定点(2p,0).命题2在抛物线y2=2px(p>0)中,过焦点F(p/2,0)作不过顶点O的一条直线交抛物线  相似文献   

9.
命题:已知直线l与抛物线 C:y~2=2px,过C的焦点F且垂直于l的直线交l于点N,则(1)l与C相切(?)点N在y轴上;(2)l与C相交(?)点N在y轴右侧;(3)l与C相离(?)点N在y轴左侧.证明:设直线 l:Ax By C=0,(A、B不全为零).  相似文献   

10.
命题 若一直线与抛物线 C:y2 =2 px(p>0 )相交于 A(x1 ,y1 ) ,B(x2 ,y2 )两点 ,则直线 AB的方程为 :2 px- (y1 y2 ) y y1 y2 =0 .证明 ∵点 A(x1 ,y1 ) ,B(x2 ,y2 )在抛物线 C:y2 =2 px上 ,∴ y21 =2 px1 ,y22 =2 px2 .作差得 :y21 - y22 =2 p(x1 - x2 ) ,当 x1 ≠ x2 时 ,k A B=y1 - y2x1 - x2 =2 py1 y2 ,∴直线 AB的方程为 :y- y1 =2 py1 y2(x- x1 ) ,即 2 px- (y1 y2 ) y y1 y2 =0 . 1当 x1 =x2 时 ,直线 AB为 :x=x1 ,此时y2 =- y1 ,故 1仍成立 .综上 ,命题成立 .特别地 :若 A(x1 ,y1 )与 B(x2 ,y2 )重合 ,即可得到过点 A…  相似文献   

11.
定理已知圆锥曲线的准线与x轴相交于点E,过相应焦点F的直线与圆锥曲线相交于A、B两点,BC//x轴交准线于C点,则AC经过线段EF的中点.证明(1)若圆锥曲线为抛物线,不妨设抛物线的方程为2y=2px(p>0).当直线AB的斜率不存在时,显然定理成立.当直线AB的斜率存在时,可设直线AB的方程为:y=  相似文献   

12.
抛物线的焦点弦有着很多值得思考的性质,这里略举一二.图1(一)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则弦长|AB|=x1 x2 p.这由抛物线的定义很容易得到.(二)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则y1·y2=-p2.证明:抛物线y2=2px与直线AB:x=ky 2p,联立得y2-2kpy-p2=0,所以由韦达定理得y1·y2=-p2.(三)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,令|AF|=r1,|BF|=r2,则r11 r12=2p.设抛物线的焦点F2p,0,当直线的斜率不存在…  相似文献   

13.
1.问题呈现已知抛物线y^2=2px(p>0),过焦点F的一条直线l交抛物线于A、B两点,原点为O.求cos∠AOB的取值范围.这个问题是我在学习的过程中的一个思考,经过研究得出以下解法:解:设A(x1,y1),B(x2,y2),易知y1^2=2px1,y2^2=2px2.  相似文献   

14.
2001年高考第19题是很典型的抛物线性质的命题: 设抛物线y2=2px(p>0)的焦点为F,过点F的直线交抛物线于A、B两点,点C在抛物线的准线上,且BC∥x轴,证明直线AC经过原点O.  相似文献   

15.
性质1设F为椭圆的一个焦点,其相应的准线为l,过椭圆上的一点M的切线交准线l于P,则PF⊥MF.证明过椭圆22ax2+by2=1(a>b>0)上点M(a cosθ,bsinθ)的切线为:x cos ysin1aθ+bθ=,则(2,(cos))sinPa b c ac cθθ?.∴sin,MFcoskba cθ=θ?k FP=c?b saicnoθsθ,∴k MF?kFP=?1,∴PF⊥MF.性质1'设F为抛物线y2=2px(p>0)的焦点,过抛物线上任一点(非顶点(0,0)M的切线交准线l于P,则PF⊥MF.证明设抛物线上一点M(t2/(2p),t)(非顶点(0,0)),则过M的切线为:2()2ty p xt=+p,∴22(,)22Pp t pt??,∴22222,MF FP2k pt kt pt p pt=?=??,∴k MF?kFP…  相似文献   

16.
<正>一、圆锥曲线统一的焦半径公式问题如图1,过抛物线y2=2px(p>0)的焦点F作倾斜角为θ的直线,交抛物线于A、B两点,求FA、FB和AB的长.解易知抛物线的准线l:x=-2p.由点A作AD⊥l于D,AE⊥Ox于E.由抛物线的定  相似文献   

17.
2001年高考数学理科(19)题、文科(20)题 试题设抛物线y=2px(p>0)的焦点为F,经过点F的直线交抛物线于A、B两点.点C在抛物线的准线上,且BC∥x轴.证明直线AC经过原点O. 本题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力.1 来源1.1 引用《平面解析几何》课本第101页8题: “过抛物线y2=2px的焦点的一条直线和这抛物线相交,两个交点的纵坐标为y1,y2,求  相似文献   

18.
用代数方法研究几何问题是解析几何的本质特征,很多解几题中的一些图形性质和“平几”知识相联系,因此,重视“平几”知识的应用,将使问题更迅速地迎刃而解.1充分发挥三角形,特别是直角三角形的解题功能例1过点P(a,b)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.解法一设点M(x,y),则点A(2x,0),点B(0,2y),∵l1⊥l2,∴2PM=AB,又∵PM=(x?a)2 (y?b)2,AB=(2x)2 (2y)2,∴2(x?a)2 (y?b)2=(2x)2 (2y)2,化简得:所求点M的轨迹方程为:2ax 2by?a2?b2=0.解法二设点M(x,y),则点A(2x,0),点B(0,2y).∵l1⊥l2,…  相似文献   

19.
2006年福建省高三质检理科卷21题:如图,F是抛物线y2=4x的焦点,Q是准线与x轴的交点,直线l经过点Q.(1)直线l与抛物线有唯一公共点,求l的方程;(2)直线l与抛物线交于A、B两点.(I)记FA、FB的斜率分别为k1、k2,求k1+k2的值;(II)若点R在线段AB上,且满足AR AQRB=QB,求点R的轨迹方程.本题在(2)(I)中求k1+k2的值,其值恰好为0,这个结论在一般情况下能否成立?是否可以延伸?直线AB、FA、FB的斜率之间是否存在某种特定关系?本文结合巧妙的化“1”证法探究如下:A O x R y Q F B性质1设抛物线y2=2px(p>0)的焦点为F,相应于焦点F的准线与x轴交…  相似文献   

20.
对一道高考题的探讨   总被引:3,自引:0,他引:3  
20 0 1年全国高考理科数学第 (19)题 (文科第 (2 0 )题 )为 :设抛物线 y2 =2 px(p>0 )的焦点为 F,经过点 F的直线交抛物线于 A,B两点 ,点 C在抛物线的准线上 ,且 BC∥ x轴 ,证明直线AC经过原点 O.由于本题中 O点就是抛物线的顶点 ,因此本题中的结论实际上就是 AC经过抛物线的顶点 ,这反映了抛物线的一个几何性质 .我们自然会联想 :椭圆、双曲线是否也具有类似的几何性质 ?我们先研究椭圆 .问题 1 设椭圆 x2a2 y2b2 =1(a>b>0 )的左焦点为 F,经过点 F的直线交椭圆于 A,B两点 ,点 C在椭圆的左准线 l上 ,且 BC∥ x轴 ,则直线 AC是否…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号