首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
纸浆接枝改性制备高吸水性树脂的研究   总被引:6,自引:0,他引:6  
采用纸浆纤维素为分子骨架,接枝丙烯酸及丙烯酰胺制备高吸水树脂。对单体用量、引发剂用量、中和度、反应温度等工艺条件进行了优化研究。利用IR图表征了产物的结构。  相似文献   

2.
以羧甲基纤维素钠、丙烯酸为主要原料,在一定条件下通过自由基接枝聚合合成高吸水树脂。分别考察了各种合成条件,如反应温度、反应时间、引发剂配比及用量、交联剂用量、丙烯酸中和度等因素对高吸水树脂吸收能力的影响,确定了最佳合成条件,并用红外光谱仪和扫描电镜对合成产物进行了表征。根据实验分析得到最佳条件为:m(CMCNa)/m(AA)=0.1,m(NMBA)/m(AA)=2.9×10-2,m(Na2S2O8+Na2SO3)/m(AA)=6.5×10-3,m(Na2S2O8)/m(Na2SO3)=2,中和度为70%,反应温度20oC,反应时间6 h。在此条件下合成的高吸水树脂吸收0.9%的Na Cl水溶液为99 g/g。  相似文献   

3.
以K2S2O8-NaHSO3氧化还原体系为引发剂,合成了羧甲基纤维素(CMC)-丙烯酰胺(AM)-壳聚糖(CTS)接枝共聚物.研究了单体浓度、引发剂用量、反应温度、反应时间以及壳聚糖用量对接枝共聚反应的影响.采用红外光谱(FI-IR)对接枝聚合物进行了结构表征.结果表明:当AM=1.00 mol.L-1,引发剂(K2S2O8/NaHSO3=1∶1)浓度为5 mmol.L-1,mCTS/mCMC=1/5,反应温度55℃,反应时间3 h时,AM的转化率和接枝效率可分别达到76%和91%.  相似文献   

4.
采用水溶液聚合法,制备了羧甲基纤维素/壳聚糖(CMC/CTS)高吸水性树脂。考察了CMC/CTS比值(质量比)、甘油质量、聚乙二醇质量及反应温度等各因素对产物吸水性能的影响,并通过正交试验,确定最佳的合成条件。采用红外光谱对产物结构进行分析。结果表明,高吸水性树脂的最佳合成条件为CMC/CTS为3:1、甘油为1.60 g、聚乙二醇为3.20 g、反应温度为25℃时,其吸水率为405 g.g-1,且吸水速率适中,保水性能良好,是一种环境友好型高吸水性树脂。  相似文献   

5.
在~(60)Coγ射线引发下,丙烯腈(AN)可以很容易地接枝到淀粉(S)上,这种接枝共聚物(S-PAN)可以制成高吸水树脂(HS-PAN)。本文报导了有关影响接枝率的因素,如剂量、剂量率、淀粉—丙烯腈摩尔比,并测得接枝PAN的分子量级为10~5。对于HS-PAN的性质也作了初步探讨。  相似文献   

6.
将粉碎后的小麦秸秆碱蒸煮后,再用硝酸降解,经预处理后得到纤维素.采用绿色环保的溶液聚合法,在引发剂和交联剂的共同作用下,使丙烯酸成功接枝到纤维素大分子骨架上,制备出吸水率和保水率俱佳的功能高分子吸水材料.优化条件下制备的高吸水性树脂在室温下进行吸水性能测试,并通过红外光谱仪、扫描电镜和热重分析仪对聚合产物进行表征.实验...  相似文献   

7.
以香蕉茎纤维和丙烯酰胺为原料,过硫酸钾和亚硫酸钠为引发剂,制备了香蕉茎纤维-丙烯酰胺高吸水树脂.在单因素实验的基础上,以树脂吸水率为响应值,选取酰纤比、反应温度、引发剂用量和交联剂用量为自变量,利用Box-Behnken设计和响应面法对各自变量及其交互作用对树脂吸水率的影响进行了研究,得到了二次多项式回归方程模型.香蕉茎纤维-丙烯酰胺高吸水树脂的最佳制备工艺条件为:酰纤比9.9 g/g、反应温度48℃、引发剂用量1.9%和交联剂用量0.18%.在此条件下,测得所制备的吸水树脂吸水率为461.22 g/g,与预测值相对误差为0.68%,说明响应面优化香蕉茎纤维-丙烯酰胺高吸水树脂的制备工艺具有较高的准确性与可靠性,该方法可用于香蕉茎纤维-丙烯酰胺高吸水树脂制备工艺的优化.  相似文献   

8.
为了开发聚乙烯醇的非纺织领域的应用,试验在水溶液中氮气保护的情况下,以N,N,-亚甲基双丙稀酰胺为交联剂.铈4+引发聚乙烯醇与丙烯酸接枝共聚制备吸水性树脂。考察了交联剂用量、引发剂用量、单体用量、反应温度、反应时间和丙烯酸中和度对产物吸水率的影响.得到如下最佳反应条件;胶联剂与聚乙烯醇的质量比为0.14;引发剂与聚乙烯醇的摩尔比为0.04;单体丙烯酸与聚乙烯醇的质量比为6;反应温度为50℃;反应时间为5h;丙烯酸中和度为50%。在该条件下制得吸去离子水高达500余倍的吸水性树脂。  相似文献   

9.
微波法合成淀粉丙烯酸高吸水性树脂的研究   总被引:3,自引:0,他引:3  
以N,N′-亚甲基双丙烯酰胺为交联剂、过硫酸铵为引发剂微波合成了高吸水性树脂.讨论了微波功率、聚合温度和聚合时间对吸水性能的影响.并采用红外光谱、扫描电镜等手段对传统条件下和微波条件下合成的高吸水树脂进行了结构袁征的分析.研究发现微波条件下明显耗能降低,反应时间缩短,合成工艺装置简化,且产物吸水性能普遍略高于传统制备工艺,具有良好的科研价值和应用潜力.  相似文献   

10.
羧甲基纤维素水凝胶分子内含有大量的羧基和羟基官能团,能够高效吸附水体中的有机污染物,同时由于水凝胶的易回收和生物相容性,目前已被广泛应用于印染废水处理。但传统的羧甲基纤维素水凝胶制备方法存在耗时长、成本高、污染重等问题。该实验设计结合我国资源化发展和环境保护需要,以纤维素水凝胶为原料,以水代替部分传统有机溶剂,开发出一种室温下快速制备羧甲基纤维素水凝胶的绿色合成方案。合成时间从44 h缩短至约4h,制备成本降低约95%,同时减少了化学试剂的使用,避免了二次污染。实验选用典型染料亚甲基蓝作为模型污染物,考察了羧甲基纤维素水凝胶对其在不同水体环境中的吸附性能。  相似文献   

11.
纤维素类高吸水材料的合成与性能研究   总被引:9,自引:0,他引:9  
本文研究了在K2 S2 O8和 (NH4 ) 2 Ce(NO3) 6不同引发剂作用下丙烯腈单体与甘蔗渣粗纤维纸浆接技聚合反应制备高吸水材料  相似文献   

12.
利用溶胶-凝胶法在一系列不同实验条件下制备出了ZAO超细粉体,用正交试验法对实验条件进行设计,确定了最佳实验条件,并利用差热-热重分析仪、X-射线衍射仪、扫描电镜等对得到的ZAO超细粉体进行了分析和表征。结果表明,在煅烧温度1 150℃,乙醇与水的比例为2.5,醋酸锌浓度为2.5 mol/L,柠檬酸三胺浓度为0.5 mol/L,氧化铝与氧化锌的质量比为3%的实验条件下,能够得到具有交错柱状晶体的ZAO超细粉体。同时,在850℃处成功对ZnO进行了铝的掺杂。  相似文献   

13.
交联聚丙烯酸吸水性树脂的结构与性能研究   总被引:2,自引:0,他引:2  
研究了交联聚丙烯酸吸水性树脂的结构与性能,并对影响其结构与性能的因素进行了探讨。为合成和应用提供了依据;同时对交联聚丙烯酸吸水性树脂的吸水机理及应用方面的研究进展进行了讨论。  相似文献   

14.
采用乳液聚合法,以玉米淀粉、苯乙烯为原料,考察反应中乳化剂用量、引发剂用量、糊化温度、反应温度、反应时间、淀粉与单体配比、水的用量对接枝率的影响。在这基础上,考察了甲基丙烯酸酯、丙烯酸酯对淀粉/苯乙烯接枝共聚的影响。实验结果表明:引发剂用量0.3 g,乳化剂用量0.35 g,淀粉与单体配比(质量比)1∶4,75℃下预糊化30 min,反应温度65℃,反应时间3.0 h,淀粉/苯乙烯接枝物的接枝率达257.0%;进一步研究接枝物性能,甲基丙烯酸酯优于丙烯酸酯。  相似文献   

15.
对高吸水树脂(SAP)在真空状态下(〈1 mmHg)进行了低温等离子体处理,分析结果表明,经过处理的树脂吸水率在较短时间处理时有所下降,但吸液率上升,在较长时间处理时,吸水率和吸液率均有不同程度的增加。在一定时间范围内,开放环境中的保水力有所增加。低温等离子体处理后,对甘草种子的毒性减少。  相似文献   

16.
应用刚果红鉴定培养基,从土壤中筛选出两种分解纤维素能力较强的真菌,分别命名为NY01和NY02.滤纸条降解度分析显示,NY01的降解能力高于NY02.应用分子生物学手段,对两株菌rDNA的ITS区域序列分析显示,NY01与木霉的相似性高达99%,NY02与毛霉的相似性高达99%,暗示NY01可能是木霉的一个种,NY02可能是毛霉的一个种.培养基中碳氮比例对两株真菌纤维素降解酶活性的研究显示,在N/C比值较低和较高时,CMC酶和FPA酶活性都低,N/C比值在1∶8时酶活性最高,说明两株真菌降解纤维素的最佳N/C比值是1∶8.  相似文献   

17.
儿童将口头语言印象直接吸收转化并形成自己的心理,这种由内部冲动而来的吸收性心理在儿童口头语言机制中占有非常重要的位置。他们的口头语言具有自发性、爆发性等特点,在此基础上,父母应该为孩子创设一个良好的语言环境,适当地给孩子模仿的机会,通过矫正使得儿童口语得到顺利发展。  相似文献   

18.
沙枣树脂是从生长的植物中流溢出来的透明棕色液体,其含有蛋白质、多糖,氨基酸、单宁、鞣制、有机酸等活性成分;葡萄树树脂是春季从葡萄树自然流出的光滑透明的液体,葡萄树树脂在含有原花素、有机酸、甾醇、还原性多糖等多种成分;[1]植物能组合天然物高分子有机物质腐败分解所生成的低分子,生成新的具有生物活性的高分子物质。所以植物固有清除生物所生产的垃圾、修复生物体、维护生物活性体的功能。植物的这种功能在植物树脂的性质上也能得到了体现。葡萄树树脂和沙枣树树脂的活性复合树脂具有和植物同样的消除生物在新陈代谢过程中生产的垃圾、修复生物体的植物性功能。所以,利用植物树脂这种活性性质可以研制出具有清除生物垃圾,净化和修复生物机体的植物活性绿色产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号