首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Editorial     
The aims of this study were to assess the validity and reliability of body volume and percent body fat determined by sulphur hexafluoride dilution, using underwater weighing as the criterion method, and to determine the influence of the magnitude of body volume. Thirty-one healthy Japanese individuals aged 18-27 years (16 males: height 1.70 - 0.06 m, mass 64.8 - 7.7 kg; 15 females: height 1.60 - 0.05 m, mass 55.2 - 6.2 kg; mean - s) participated in the study. Sulphur hexafluoride dilution measures the concentration of sulphur hexafluoride gas in the chamber (BSF-200, Shimazu Corp.). Underwater weighing was performed five times using a weight scale (AD-6204, A&;D) after residual volume had been determined (System9, Minato Medical Corp.). There were no significant differences in the mean between two trials for body volume, body density or percent body fat determined by sulphur hexafluoride dilution. The intra-class correlation coefficient of these variables ranged from 0.985 to 0.999. The results suggest that sulphur hexafluoride dilution is a reliable method for assessing body composition. There was no significant difference in body volume or percent body fat between sulphur hexafluoride dilution (males: 61.3 - 7.6 litres, 18.4 - 6.7%; females: 52.8 - 6.9 litres, 21.0 - 8.9%) and underwater weighing (males: 60.6 - 7.0 litres, 15.6 - 3.5%; females: 53.0 - 6.5 litres, 23.7 - 6.1%) and there was a high correlation between the two ( r = 0.997, P ? 0.05). A Bland-Altman plot of the difference between percent body fat estimated by underwater weighing and sulphur hexafluoride dilution versus average percent body fat by the two methods showed no systematic difference (mean difference =- 0.12 - 6.6 kg). The upper and lower limits of agreement were 13.2% and-13.4%, respectively. Determination by sulphur hexafluoride dilution resulted in both over- and underestimations in body volume and the difference between the two body volumes (determined by underwater weighing and by sulphur hexafluoride dilution) was inversely proportional to the mean body volume by the two methods. This suggests that improvements need to be made to the device or to the technique to maintain a constant volume of sulphur hexafluoride in the chamber.  相似文献   

2.
The aims of this study were to assess the validity and reliability of body volume and percent body fat determined by sulphur hexafluoride dilution, using underwater weighing as the criterion method, and to determine the influence of the magnitude of body volume. Thirty-one healthy Japanese individuals aged 18-27 years (16 males: height 1.70 +/- 0.06 m, mass 64.8 +/- 7.7 kg; 15 females: height 1.60 +/- 0.05 m, mass 55.2 +/- 6.2 kg; mean +/- s) participated in the study. Sulphur hexafluoride dilution measures the concentration of sulphur hexafluoride gas in the chamber (BSF-200, Shimazu Corp.). Underwater weighing was performed five times using a weight scale (AD-6204, A&D) after residual volume had been determined (System9, Minato Medical Corp.). There were no significant differences in the mean between two trials for body volume, body density or percent body fat determined by sulphur hexafluoride dilution. The intra-class correlation coefficient of these variables ranged from 0.985 to 0.999. The results suggest that sulphur hexafluoride dilution is a reliable method for assessing body composition. There was no significant difference in body volume or percent body fat between sulphur hexafluoride dilution (males: 61.3 +/- 7.6 litres, 18.4 +/- 6.7%; females: 52.8 +/- 6.9 litres, 21.0 +/- 8.9%) and underwater weighing (males: 60.6 +/- 7.0 litres, 15.6 +/- 3.5%; females: 53.0 +/- 6.5 litres, 23.7 +/- 6.1%) and there was a high correlation between the two (r = 0.997, P < 0.05). A Bland-Altman plot of the difference between percent body fat estimated by underwater weighing and sulphur hexafluoride dilution versus average percent body fat by the two methods showed no systematic difference (mean difference = -0.12 +/- 6.6 kg). The upper and lower limits of agreement were 13.2% and -13.4%, respectively. Determination by sulphur hexafluoride dilution resulted in both over- and underestimations in body volume and the difference between the two body volumes (determined by underwater weighing and by sulphur hexafluoride dilution) was inversely proportional to the mean body volume by the two methods. This suggests that improvements need to be made to the device or to the technique to maintain a constant volume of sulphur hexafluoride in the chamber.  相似文献   

3.
Abstract

The purpose of this study was to examine the accuracy and reliability of whole-body volume, body density, and percent body fat calculated from body volume without the head (V NH), as assessed by hydrostatic weighing without head submersion and predicted head volume (pV H) based on head parameters, as compared with standard hydrostatic weighing. Participants comprised 29 males and 27 females aged 17–26 years. Head volume was predicted from anthropometric head parameters using a prediction equation. Underwater weights with/without head submersion were measured five times. The reliability of underwater weighing without head submersion was very good (intraclass correlation coefficient: males=0.998, females=0.998) as was that for traditional head submersion. The relationship between the sum of V NH and pV H and the whole-body volume measured by hydrostatic weighing was very high (males=0.998, females=0.999), and their values were very similar with an error range of 300–400 ml. Although percent body fat assessed from the sum of V NH and pV H showed a slight scatter of 2–3% from the identity line of percent body fat assessed by hydrostatic weighing, the relationships for both sexes were very strong (males=0.918, females=0.957). The errors (2 standard deviations) as determined by Bland-Altman plots between the two methods were ?3.2 to 2.6% in males and ?2.3 to 2.8% in females. There was no significant bias in percent body fat estimated by the two methods (hydrostatic weighing with/without head submersion), and the sum of V NH and pV H could validly estimate body composition, regardless of physical size. It is suggested that hydrostatic weighing without head submersion is a valid and convenient alternative technique.  相似文献   

4.
Accurate measurement of head volume is indispensable for precise assessments of body composition determined by hydrostatic weighing without head submersion. The purpose of this study was to establish a prediction equation for head volume measured by the immersion method from multiple regression analysis using head parameters (head circumference, head length, head breadth, neck girth and head thickness) as independent variables. The participants were 106 Japanese young adults (55 males and 51 females) aged 17-27 years. Intra-class correlation coefficients (ICCs) for each head parameter and head volume in males and females were very high (ICC = 0.993-0.999, 0.992-0.998). Head circumference was closely related to head volume measured by the immersion method (r = 0.719, 0.861, P < 0.05), and was the most important parameter for the prediction equation in both sexes. Head breadth was related poorly (r = 0.475, 0.500, P < 0.05) and showed a small individual difference. It was, therefore, excluded from the independent variables. The prediction equation for males was predicted head volume = 122.10X1 + 106.19X3 + 37.16X4 - 89.46X5 - 4754.93, R = 0.909, SEE = 121.75 ml, and that for females was predicted head volume = 213.83X1 + 45.24X3 + 36.85X4 - 74.34X5 - 8912.43, R = 0.913, SEE = 136.26 ml (where X1 = head circumference, X3 = head length, X4 = neck girth, X5 = head thickness, and SEE = standard error of the estimate). The limits of agreement for predicted and measured head volume were -234.5 to 234.1 ml for males, and -261.0 to 261.0 ml for females. In cross-validation groups of both sexes, there were no significant differences between measured head volume and predicted head volume. The correlation coefficients between measured head volume and predicted head volume in males and females were 0.894 and 0.908, respectively. The predicted head volume from prediction equations was considered to have high reliability and validity.  相似文献   

5.
Accurate measurement of head volume is indispensable for precise assessments of body composition determined by hydrostatic weighing without head submersion. The purpose of this study was to establish a prediction equation for head volume measured by the immersion method from multiple regression analysis using head parameters (head circumference, head length, head breadth, neck girth and head thickness) as independent variables. The participants were 106 Japanese young adults (55 males and 51 females) aged 17?–?27 years. Intra-class correlation coefficients (ICCs) for each head parameter and head volume in males and females were very high (ICC = 0.993?–?0.999, 0.992?–?0.998). Head circumference was closely related to head volume measured by the immersion method (r = 0.719, 0.861, P <?0.05), and was the most important parameter for the prediction equation in both sexes. Head breadth was related poorly (r = 0.475, 0.500, P <?0.05) and showed a small individual difference. It was, therefore, excluded from the independent variables. The prediction equation for males was predicted head volume = 122.10X 1 + 106.19X 3 + 37.16X 4 - 89.46X 5 - 4754.93, R = 0.909, SEE = 121.75?ml, and that for females was predicted head volume = 213.83X 1 + 45.24X 3 + 36.85X 4 - 74.34X 5 - 8912.43, R = 0.913, SEE = 136.26?ml (where X 1 = head circumference, X 3 = head length, X 4 = neck girth, X 5 = head thickness, and SEE = standard error of the estimate). The limits of agreement for predicted and measured head volume were –?234.5 to 234.1?ml for males, and ??261.0 to 261.0?ml for females. In cross-validation groups of both sexes, there were no significant differences between measured head volume and predicted head volume. The correlation coefficients between measured head volume and predicted head volume in males and females were 0.894 and 0.908, respectively. The predicted head volume from prediction equations was considered to have high reliability and validity.  相似文献   

6.
皮褶厚度法间接测定中国人身体脂肪含量公式的初步建立   总被引:6,自引:1,他引:5  
以不同年龄、不同性别的一般人群为实验对象,分别采用皮褶法和水下称重法测定身体脂肪含量。结果发现,采用国外皮褶公式求得的体脂含量与经典水下称重法相比有显著性差异。实验表明,测定我国人群的脂肪含量不宜直接套用国外皮褶公式。实验以水下称重法为标准,采用逐步回归初步建立了适合我国人的皮褶厚度推算身体脂肪含量的回归方程  相似文献   

7.
Body mass changes during ultra-endurance performances have been described for running, cycling and for swimming in a heated pool. The present field study of 20 male and 11 female open-water swimmers investigated the changes in body composition and hydration status during an ultra-endurance event. Body mass, both estimated fat mass and skeletal muscle mass, haematocrit, plasma sodium concentration ([Na+]) and urine specific gravity were determined. Energy intake, energy expenditure and fluid intake were estimated. Males experienced significant reductions in body mass (-0.5 %) and skeletal muscle mass (-1.1 %) (P < 0.05) during the race compared to females who showed no significant changes with regard to these variables (P > 0.05). Changes in percent body fat, fat mass, and fat-free mass were heterogeneous and did not reach statistical significance (P > 0.05) between gender groups. Fluid intake relative to plasma volume was higher in females than in males during the ultra-endurance event. Compared to males, females' average increase in haematocrit was 3.3 percentage points (pp) higher, urine specific gravity decrease 0.1 pp smaller, and plasma [Na+] 1.3 pp higher. The observed patterns of fluid intake, changes in plasma volume, urine specific gravity, and plasma [Na+] suggest that, particularly in females, a combination of fluid shift from blood vessels to interstitial tissue, facilitated by skeletal muscle damage, as well as exercise-associated hyponatremia had occurred. To summarise, changes in body composition and hydration status are different in male compared to female open-water ultra-endurance swimmers.  相似文献   

8.
Isothermal air trapped in scalp hair generates an underestimation of body volume when it is measured by air displacement plethysmography. The aim of this study was to examine the effect of wearing different types of swim caps on the measurement of body volume and percentage body fat by air displacement plethysmography. It was hypothesized that wearing a silicone swim cap would more thoroughly compress scalp hair compared with a lycra swim cap, yielding higher estimates of body volume and percent body fat. Thirty female participants aged 25.7 ± 6.4 years were measured in random order when wearing no swim cap, a lycra swim cap or a silicone swim cap. For the no-cap versus lycra cap condition, the mean bias for body volume was -0.579 ± 0.380 litre (limits of agreement: -1.340 to 0.181 litre) and for percent fat -4.9 ± 3.1% fat (limits of agreement: -11.2 to 1.3% fat) (P < 0.05). For the silicone versus lycra condition, the mean bias for body volume was 0.137 ± 0.099 litre (limits of agreement: -0.062 to 0.335 litre) and for percent fat 1.2 ± 0.9% fat (limits of agreement: -0.5 to 2.9% fat) (P < 0.05). In conclusion, attention should be paid to optimal compression of isothermal air trapped in scalp hair when using air displacement plethysmography. The present results suggest that this compression may be more thorough when wearing a silicone swim cap.  相似文献   

9.
Abstract

Information on the prediction of adult relative fat mass (percent body fat,%BF) using measures from pre-pubertal ages and early childhood is scarce. In the present longitudinal study, we assess the development of different anthropometric indicators of percent body fat during childhood, adolescence, and adulthood in 37½-year-old females stratified for low and high percent body fat. Consequently, we study the predictability of percent body fat based on simple anthropometric measurements during childhood and adolescence.

Anthropometric data from the Belgian longitudinal experimental growth study “LEGS” were used. Beginning in 1969, five yearly cohorts of about 100 individuals each (mean age 6 years) were recruited in public kindergartens. Of the original 515 participants (260 males, 255 females) that were measured annually from age 6 to 18 years, 59 males and 60 females agreed to participate in a follow-up study in 2004. During the follow-up measurements, the participants were invited for a body-composition assessment by bioelectrical impedance analysis (BIA). We stratified the participants into low (%BF-BIA < 35%) and high (%BF-BIA≥35%) relative fat mass samples. Pearson correlations were calculated and used as tracking coefficients. Multiple stepwise linear regression was applied with anthropometric variables at each age separately as predictors for adult percent body fat, expressed as%BF-BIA, %BF-Segal, and %BF-D&W (Durnin & Womersley, 1974).

The results indicate that a single skinfold thickness during adolescence is a better predictor for adult percent body fat than adolescent body mass index. Additionally, our results suggest that this holds during childhood as early as from age 8 onwards. The use of single skinfold measurements as predictors for adult adiposity and obesity is supported by other arguments, including: (1) body mass index as a proxy for overweight does not discriminate between fat mass and fat-free mass, and (2) an excess of adipose tissue is more strongly associated with morbidity than the body mass index.  相似文献   

10.
This study examined a method of predicting body density based on hydrostatic weighing without head submersion (HWwithoutHS). Donnelly and Sintek (1984) developed a method to predict body density based on hydrostatic weight without head submersion. This method predicts the difference (D) between HWwithoutHS and hydrostatic weight with head submersion (HWwithHS) from anthropometric variables (head length and head width), and then calculates body density using D as a correction factor. We developed several prediction equations to estimate D based on head anthropometry and differences between the sexes, and compared their prediction accuracy with Donnelly and Sintek's equation. Thirty-two males and 32 females aged 17-26 years participated in the study. Multiple linear regression analysis was performed to obtain the prediction equations, and the systematic errors of their predictions were assessed by Bland-Altman plots. The best prediction equations obtained were: Males: D(g) = -164.12X1 - 125.81X2 - 111.03X3 + 100.66X4 + 6488.63, where X1 = head length (cm), X2 = head circumference (cm), X3 = head breadth (cm), X4 = head thickness (cm) (R = 0.858, R2 = 0.737, adjusted R2 = 0.687, standard error of the estimate = 224.1); Females: D(g) = -156.03X1 - 14.03X2 - 38.45X3 - 8.87X4 + 7852.45, where X1 = head circumference (cm), X2 = body mass (g), X3 = head length (cm), X4 = height (cm) (R = 0.913, R2 = 0.833, adjusted R2 = 0.808, standard error of the estimate = 137.7). The effective predictors in these prediction equations differed from those of Donnelly and Sintek's equation, and head circumference and head length were included in both equations. The prediction accuracy was improved by statistically selecting effective predictors. Since we did not assess cross-validity, the equations cannot be used to generalize to other populations, and further investigation is required.  相似文献   

11.
The aims of this study were to identify differences between the sexes in extra-curricular participation in sports and to determine its association with body fat and socio-demographic factors in Spanish adolescents. A total of 2165 adolescents (1124 males and 1041 females) aged 13.0-18.5 years from the AVENA Study participated. Participants filled in an ad hoc questionnaire for extra-curricular participation in sports, which was the dependent variable. Independent variables were: age, percent body fat, and father's and mother's educational level and occupation. Chi-square tests and logistic regression were applied. Bivariate analysis showed for male adolescents that age and father's occupation were related to extra-curricular participation in sports. In addition, body fat and mother's education and occupation (all P?相似文献   

12.
Immersion of 18 male subjects in water caused a 20.4% (787 ml) increase (P less than 0.05) in the mean inspiratory capacity (IC) whereas there were no changes (P greater than 0.05) in tidal volume (VT) and the frequency of respiration. All the means for the other pulmonary variables decreased (P less than 0.05) by varying amounts: total lung capacity (TLC) = 8.4% (599 ml), vital capacity (VC) = 5.5% (308 ml), functional residual capacity (FRC) = 42.6% (1386 ml), expiratory reserve volume (ERV) = 61.9% (1095 ml) and residual volume (RV) = 19.7% (292 ml). Variation of only the RV in the body density (BD) formula from which the percentage body fat (%BF) is estimated resulted in a significantly (P less than 0.05) lower mean of 15.2% BF for the RV in air (means = 1482 ml) compared with that of 17.1% BF for the RV in water (means = 1190 ml). All but one of the subjects exhibited a smaller RV in water than in air; the six largest differences were equivalent to 2.4-5.1% BF. These results indicate that the net effect of the hydrostatic pressure (decreases RV), pulmonary vascular engorgement (decreases RV) and diminished compliance (increases RV) is to reduce the ventilated RV. It is therefore advisable to measure the RV when the subject is immersed in order to minimize error in the determination of BD and hence the estimation of % BF.  相似文献   

13.
Abstract

James S. Skinner and Thomas M. McLellan begin this section with a discussion of the transition from aerobic to anaerobic metabolism. Discrepancies are identified in activities being defined as anaerobic and the relative importance and meaning of lactate concentration in the blood. Skinner and McLellan propose a hypothetical model to more accurately explain anaerobic activities. The second article, by Frank Katch and Victor Katch, contains a review of sources of error in body composition assessment by laboratory and field methods. Katch and Katch describe problems occurring in the use of hydrostatic weighing, residual air volume, skinfolds, and circumferences. In addition, the importance of statistical considerations is stressed, with an emphasis on the proper use of multiple regression techniques in conducting studies of the measurement of body composition.  相似文献   

14.
The aims of this study were to assess the reliability and validity of three methods of bioelectrical impedance analysis (based on induction between the hand and foot, between one foot and the other foot and between one hand and the other hand) and the skinfold method, and to construct prediction equations for total body density by examining cross-validity in young Japanese adult males. The participants were 50 Japanese males aged 18-27 years (height 1.72 +/- 0.06 m, body mass 64.9 +/- 9.0 kg; mean +/- s), each of whom was measured twice using each of the four methods. Relative body fat based on underwater weighing was used as the criterion for validity. To construct prediction equations for body density, we used multiple regression analysis, whereby all possible combinations were examined. The reliability of all three bioelectrical impedance methods was high (R = 0.999). Three new prediction equations were constructed for the hand-foot method, foot-foot method and skinfold method. The cross-validity of the equations was guaranteed. The relative body fat calculated using the new equations did not differ from that based on the underwater weighing method.  相似文献   

15.
The aims of this study were to determine the validity of fat mass of the trunk as a predictor for visceral fat area at the umbilicus level and to develop equations to predict visceral fat mass at the umbilicus level using fat mass of the trunk measured by dual-energy X-ray absorptiometry (DXA) and bioelectrical impedance analysis (BIA). The participants were 121 normal Japanese adults (69 males, 52 females). Another 60 volunteer adults (34 males, 26 females) were recruited for examination of cross-validity. Altogether, 41 adults (15 males, 26 females) in the original group and 19 adults (7 males, 12 females) in the cross-validity group received BIA measurement. We measured fat mass by DXA and the BIA system, which was a single-frequency BIA with 8-point contact electrodes, and visceral fat area by computed tomography. We observed significant correlations for visceral fat area in waist circumference (0.56) and fat mass of the trunk measured by DXA (0.64). There was no significant difference in fat mass of the trunk between the DXA and BIA systems, but the BIA system tended to provide an underestimate compared with DXA. With combined fat mass of the trunk measured by DXA and waist circumference as predictors, visceral fat area was estimated by equation (1) (R = 0.87, R(2) = 0.76, standard error of the estimate = 20.9 cm(2)). When substituting fat mass of the trunk measured by BIA into equation (1), there was no significant difference in visceral fat area between the reference and predicted values. An equation using fat mass of the trunk measured by BIA (equation 2) was obtained (R = 0.89, R(2) = 0.78, standard error of the estimate = 20.7 cm(2)), but a systematic error was found for the males. There was cross-validity in both equations. In conclusion, fat mass of the trunk is an effective predictor for the visceral fat area at the umbilicus level. Fat mass of the trunk measured by BIA might be a valid method to predict visceral fat, although further studies with larger samples taking into account the extent and type of obesity are required.  相似文献   

16.
17.
Abstract

The aims of this study were to examine training characteristics, body composition, muscular strength, and endurance in sport climbers, and to demonstrate the relationship among these components by means of structural equation modelling. Altogether, 205 sport climbers (136 males, 69 females), with a performance RP (red point) of grade 4 to 11 on the Union Internationale des Association d'Alpinisme (UIAA) scale, took part in the study. The proposed structural model, with latent variable hand–arm strength and endurance (developed from reference values for simple tests), indicated by three manifest variables (grip strength, bent-arm hang, and finger hang) and three exogenous variables (body fat, volume of climbing, and climbing experience), explained 97% of the variance in climbing performance. The relationship between body fat and climbing experience/volume with climbing performance was not direct, but was better explained using the mediator hand–arm strength and endurance. We conclude that these simple tests, together with percent body fat, volume of climbing, and climbing experience, can satisfactorily predict climbing performance.  相似文献   

18.
Abstract

The aims of this study were to identify differences between the sexes in extra-curricular participation in sports and to determine its association with body fat and socio-demographic factors in Spanish adolescents. A total of 2165 adolescents (1124 males and 1041 females) aged 13.0–18.5 years from the AVENA Study participated. Participants filled in an ad hoc questionnaire for extra-curricular participation in sports, which was the dependent variable. Independent variables were: age, percent body fat, and father's and mother's educational level and occupation. Chi-square tests and logistic regression were applied. Bivariate analysis showed for male adolescents that age and father's occupation were related to extra-curricular participation in sports. In addition, body fat and mother's education and occupation (all P < 0.05) were related to extra-curricular participation of in sports for female adolescents. Logistic regression analysis showed that the likelihood of involvement in extra-curricular participation in sports was 5.3-fold (3.86–7.38) higher for males than females. Age and father's education in both males and females were independently associated with extra-curricular participation in sports. In summary, Spanish male adolescents were shown to engage in more extra-curricular sports than females. In addition, age and father's education (in both sexes) were associated with the participation of their offspring in extra-curricular sports during adolescence.  相似文献   

19.
Abstract

The aims of this study were to determine the validity of fat mass of the trunk as a predictor for visceral fat area at the umbilicus level and to develop equations to predict visceral fat mass at the umbilicus level using fat mass of the trunk measured by dual-energy X-ray absorptiometry (DXA) and bioelectrical impedance analysis (BIA). The participants were 121 normal Japanese adults (69 males, 52 females). Another 60 volunteer adults (34 males, 26 females) were recruited for examination of cross-validity. Altogether, 41 adults (15 males, 26 females) in the original group and 19 adults (7 males, 12 females) in the cross-validity group received BIA measurement. We measured fat mass by DXA and the BIA system, which was a single-frequency BIA with 8-point contact electrodes, and visceral fat area by computed tomography. We observed significant correlations for visceral fat area in waist circumference (0.56) and fat mass of the trunk measured by DXA (0.64). There was no significant difference in fat mass of the trunk between the DXA and BIA systems, but the BIA system tended to provide an underestimate compared with DXA. With combined fat mass of the trunk measured by DXA and waist circumference as predictors, visceral fat area was estimated by equation (1) (R = 0.87, R 2 = 0.76, standard error of the estimate = 20.9 cm2). When substituting fat mass of the trunk measured by BIA into equation (1), there was no significant difference in visceral fat area between the reference and predicted values. An equation using fat mass of the trunk measured by BIA (equation 2) was obtained (R = 0.89, R 2 = 0.78, standard error of the estimate = 20.7 cm2), but a systematic error was found for the males. There was cross-validity in both equations. In conclusion, fat mass of the trunk is an effective predictor for the visceral fat area at the umbilicus level. Fat mass of the trunk measured by BIA might be a valid method to predict visceral fat, although further studies with larger samples taking into account the extent and type of obesity are required.  相似文献   

20.
Skinfold prediction equations recommended by the American College of Sports Medicine underestimate body fat percentage. The purpose of this research was to validate an alternative equation for men created from dual energy x-ray absorptiometry. Two hundred ninety-seven males, aged 18–65, completed a skinfold assessment and dual energy x-ray absorptiometry scan to determine percent of body fat. Three American College of Sports Medicine equations (JP7, JP3a, and JP3b) and the new dual energy x-ray absorptiometry criterion equation were used to predict percent of body fat. Mean age was 32.4 ± 14.0 years and mean BMI was 25.6 ± 3.3 kg/m2. The mean dual energy x-ray absorptiometry percent of body fat was 18.0 ± 5.9. The mean percent of body fat for Dual Energy X-Ray Aborptiometry (DC), JP7, JP3a, and JP3b were 19.1 ± 6.3, 16.1 ± 7.4, 14.8 ± 6.8, 15.6 ± 6.7, respectively. The standard error of the estimate of DC was low (2.72%) and was highly correlated (R2 = 0.87) with dual energy x-ray absorptiometry. The DC equation more accurately predicted percent of body fat across a general population of men than the recommended American College of Sports Medicine equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号