首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本刊90年3期《一道值得重视的立体几何习题》、92年2期《一个值得重视的二面角公式》讨论了立体几何中的一个习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1cosθ_2=cosθ”的应用和推广,很有教益,也非常重要。笔者认为,这习题之所以重要,不是没有涉及二面角,而是把直二面角的存在与面角的计算公式:  相似文献   

2.
下面三题都是高中《立体几何(必修)》教材中的习题. 题目1 如图,AB和平面α成的角是θ_1,AC在平面α内,AC和AB的射影AB′,所成角为θ_2,设么∠BAC=θ.求证: cosθ_1·cosθ_2=cosθ.(P.117第3题) 题目2 经过一个角的顶点引这个角所在的平面的斜线.如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.  相似文献   

3.
六年制重点高中数学课本(试用本)《立体几何》P34第10题是: 求证:两条平行线和同一平面所成的角相等。人民教育出版社出版的教学参考书是这样给出“已知”的: 已知:a∥b,a∩α=A_1,b∩α=B_1,∠θ_1,θ_2分别是a、b与α所成的角。显然这里的“a∩α=A_1,b∩α=A_2”缩小了题目的条件范围,使后来的证明漏掉如下面三个图所示的∠θ_1=∠θ_2=0°的情况。  相似文献   

4.
高中《立体几何》(必修本)P_(117)总复习参考题第3题.如图1,AB 和平面α所成的角为θ_1,AC在平面α内,AC 和 AB 的射影AB′成角θ_2,设∠BAC=θ.求证:cosθ_1·cosθ_2=cosθ.本题只要利用三垂线定理(或逆定理)便可证明.由此不难得到下面两个结论:(1)公式成立的充要条件为角θ_1,θ_2所在的  相似文献   

5.
高中《立体几何》(必修) P_(117)第3题:如图1,AB 和平面 a所成的角是θ_1,AC 在平面α内,AC 和 AB 的射影AB′成角θ_2,设∠ABC=θ.求证:cosθ_1·cosθ_2=cosθ.证明略.显然,题中的θ_1、θ_2、θ都是锐角;由余弦函数的单调性知,cosθ_1>cosθ,且cosθ_2>cosθ.于是θ_1  相似文献   

6.
立体几何课本第117页有一道习题:如图1,AB和平面α所成角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1·cosθ_2=cosθ(1)。此题证明并不难,利用三垂线定理和直角三角形中的边角关系,即可证得。值得指出的是可以引导学生从这个等式中学到更多的东  相似文献   

7.
现行《立体几何》课本第116页的总复习参考题第3题是这样叙述的:如图,AB和平面α所成的角是0_1,AC在平面α内,AC和AB的射影AB′成角0_2,设∠BAC=0,求证:  相似文献   

8.
本刊1990年第3期刊登的《一道值得重视的立体几何习题》一文,介绍了习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_1,设∠BAC=θ,求证 cosθ_1cosθ_2=cosθ(*)~n的结论的广泛应用,读后颇受启发。但美中不足的是(*)式没有涉及二面角,如图1,若在α内过B′作B′D⊥AC,D为垂足,则  相似文献   

9.
今年高等学校招生考试数学试题共十道题。代数四题,平面几何、立体几何和三角各两题。四道代数题是:1.某工厂第三年的产量比第一年的产量增长21%,问平均每年此上一年增长百分之几?又第一年的产量是第三年的产量的百分之几?(精确到1%。)2.求(1-2i)~5的实部。3.解方程:Iog(X-5) Iog(X 3)-2 Iog2=Iog(2X-9).  相似文献   

10.
求解二面角的大小,是立体几何教学中的一大难点,我们知道,二面角的大小,需要借助于它的平面角来度量,对于平面角的概念需要理解以下3个条件:(1)顶点在“棱”上;(2)边分别在两“半平面”内;(3)边与“棱”垂直.这3个条件,缺一不可.有关二面角问题的求解,由于可联系的知识面广,往往一个题目可把立体几何、平面几何、代数和三角等知识  相似文献   

11.
在高中立体几何课本中,有一道习题如下:如图,AB和平面a所成的角是θ_1,AC在平面a内,AC和AB的射影AB′成θ_2角,设∠BAC=θ,求证:cosθ=cosθ_1cosθ_2 (1) 运用公式(1),需具备如下条件: 在三面角中,若两个面角所在的平面成直二面角,那么它所对面角的余弦等于这两个面角的余弦之积。公式(1)是球面三角中三面角余弦定理的特殊情  相似文献   

12.
如图,AB 和 CD 是四面体 ABCD 的一双对棱。为叙述方便,我们约定:棱 AB 所在的二面角的平面角为θ1,∠ACB=α_1,∠ADB=3_1;棱 CD 所在的二面角的平面角为θ_2,∠CAD=α_2,∠CBD=β_2。在四面体 ABCD 中,如上所述的八个元素(两条棱、六个角)之间存在着十分密切的联系。本文揭示出其中的两个关系式,并简单介绍它们在解题中的实际应用。定理一四面体 ABCD 中,AB/(sinθ_1 sinα_1 sinβ_1)=CD/(sinθ_2 sinα_2 sinβ_2)。证明:如图,过四面体 ABCD 的顶点  相似文献   

13.
定理:已知平面φ_1、φ2、φ_3两两相交,φ_1∩φ_2=φ_3,φ_2∩φ_3=l_1,φ_3∩φ_1=l_2,并且φ_1与φ_2所成二面角为θ,φ_2与φ_3所成二面角为θ_1;φ_3与φ_1所成二面角为θ_2。则  相似文献   

14.
充分利用课本中的习题,引导学生对习题中的条件和结论进行多变或引伸,或扩充,进而得出新的结论,能起到举一反三的效果。高中立体几何课本(甲种本)总复习参考题中有这样一道习题:“如图,AB和平面α所成的角是θ,AC在平面α内,AC和AB的射影AB’成角θ,设∠BAC=θ,求证:cosθ_1·cosθ_2=cosθ.”这道题的证明并不困难,但其结论却是有用的。用这个  相似文献   

15.
20 0 4年全国高考数学第 (2 0 )题是一道立体几何题 .原题是 :如图 1,四棱锥P-ABCD中 ,底面ABCD为矩形 ,AB =8,AD =4 3,侧面PAD为等边三角形 ,并且与底面所成二面角为 6 0° .(Ⅰ )求四棱锥P-ABCD的体积 ;(Ⅱ )证明PA⊥BD .本题主要考查空间想象能力、分析问题的能力 .命题组提供此题的参考答案要点是 :     图 1(Ⅰ )利用传统方法 ,依次用三垂线定理、二面角的平面角、棱锥体积公式 ;(Ⅱ )解法一利用向量方法 ,以P在底面ABCD上的射影O为原点建立空间直角坐标系 ,通过计算考虑PA、BD是否垂直 .解法二是传统方法 ,先通过…  相似文献   

16.
《立体几何》二面角部分常遇到这样的问题:从二面角α—MN—β内一点P,分别作PA垂直于平面α,PB垂直于平面β(A,B为垂足).已知 (1)PA=2cm,PB=3cm,∠APB=60°; (2)PA=2cm,PB=1cm,∠APB=60°;  相似文献   

17.
正1、如图:已知二面角α-MN-β,A∈MN,AB(?)α,AC(?)β,设∠BAN=θ_1,∠CAN=θ_2,二面角α-MN-β的大小为θ_3,∠BAC=θ,那么cosθ=cosθ_1cosθ_2+sinθ_1sinθ_2cosθ_3证明:如图(一)1°、当θ_1、θ_2均为锐角时,在AB上取一点E(异于点A),在平面α内作EG⊥MN,垂足为G,在平面β内作GF⊥MN  相似文献   

18.
立体几何离不开图形,而其中最主要的是基本图形.因此,在立体几何教学中,要引导学生在掌握好基本图形的基础上,学会基本图形间的组合与把较复杂图形分离成基本图形的方法,这是学好立体几何的关键之一。例1.比较下列4题中4种图形在结构上的异同.(1)三棱锥P—ABC中,PA⊥面ABC,平面PBC⊥平面PAB,求证:BC⊥AB.(2)在上题中,若AD⊥PB交PB于D,AE⊥PC交PC于E,AD∶AE=1∶2.求二面角A—PC—B的大小.(3)直三棱柱ABC—A1B1C1中,侧棱AA1=4,底面△ABC中,AB=BC=2,∠B=90°.求截面A1BC与侧面A1ACC1所成的锐二面角的大小.(4)圆柱侧…  相似文献   

19.
在历年高考中,解决立体几何解答题一般有几何法和向量法两种(几何法重逻辑推理,向量法重计算).现就一道典型题目谈谈二面角问题的求解策略. 题目 如图1,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (1)证明:PA⊥BD. (2)若PD=AD,求二面角A-PB-C的余弦值. 现在主要针对第二问作探讨. 解法1:作出二面角的平面角. 过点A作AE⊥PB交PB于E,过E作EF∥BC交PC于F,连接AF.  相似文献   

20.
题目:(2001年全国高考数学试卷理科第17题)如图1,在底面是直角梯形的四棱锥S-ABCD中,∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=1/2.(1)求四棱锥S- 图1ABCD的体积; (2)求面SCD与面SBA所成二面角的正切值. 第(1)题容易用体积公式直接求解.而第(2)题则是一道典型的无棱二面角问题,故在  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号