首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose was to evaluate the traditional method, of visually focusing on the ball, in comparison to focusing on the hole, during the putting stroke. The study design consisted of a pretest, a 4-week practice period, and a posttest. Participants (n = 31, handicap: 18.7 ± 10.4) practised using only one of the two gaze techniques. Testing consisted of having all participants putt using both gaze techniques from both a 1.22 m and a 4 m distance. Five putts were executed for each gaze technique/putt length combination for a total of 20 putts in each testing session per participant. The kinematics of every putting stroke executed during testing (1240 strokes) were captured using a TOMI? system. There was a significant improvement in putting success for both groups following practice (P = 0.001). Practising while visually focusing on the hole, resulted in a statistically significant reduction in putter speed variability in comparison to practising while visually focusing on the ball (P = 0.017). Visually focusing on the hole did not meaningfully (nor statistically) affect the quality of impact as assessed by the variability in face angle, stroke path, and impact spot at the precise moment the putter head contacted the ball.  相似文献   

2.
This paper seeks to address the implications on putting a golf ball with an off-center mass by analyzing the effect of unbalanced mass of ball on its impact and subsequent rolling. We present the general formulation of a rigid golf ball rolling with slip that is able to transition to rolling friction on an arbitrary surface. Particular attention is given to the effects of the offset center of mass on the golf ball’s path. An experimental setup based on a USGA Stimpmeter is used to calibrate the position of contact point as the ball rolls on the green. The trajectories of the ball due to the mass imbalance were studied by numerically solving the equations of motion during putting. Theoretical predictions show that a mass imbalance has little effect on the launch conditions of the ball. However, on a level green a mass offset center of 0.2 % of the ball’s radius can impact the path of the ball with the consequences of missing the hole in a 5.8 m putt. Changing golf ball trajectories with mass offset center has implications on the development of balls and putting.  相似文献   

3.
Abstract

The purpose was to evaluate the traditional method, of visually focusing on the ball, in comparison to focusing on the hole, during the putting stroke. The study design consisted of a pretest, a 4-week practice period, and a posttest. Participants (n = 31, handicap: 18.7 ± 10.4) practised using only one of the two gaze techniques. Testing consisted of having all participants putt using both gaze techniques from both a 1.22 m and a 4 m distance. Five putts were executed for each gaze technique/putt length combination for a total of 20 putts in each testing session per participant. The kinematics of every putting stroke executed during testing (1240 strokes) were captured using a TOMI® system. There was a significant improvement in putting success for both groups following practice (P = 0.001). Practising while visually focusing on the hole, resulted in a statistically significant reduction in putter speed variability in comparison to practising while visually focusing on the ball (P = 0.017). Visually focusing on the hole did not meaningfully (nor statistically) affect the quality of impact as assessed by the variability in face angle, stroke path, and impact spot at the precise moment the putter head contacted the ball.  相似文献   

4.
Johnston, Benton, and Nishida (2003, Last but not least - Golfers may have to overcome a persistent visuospatial illusion. Perception, 32(9), 1151–1154) reported that when standing sideways to hit a golf ball, it becomes very difficult to see the veridical line of putt to the target and it creates a bias to misread the direction to the right of target. The purpose of the study was to determine if this perceptual aiming bias also impacts putting. A group of expert (N = 24) and novice (N = 24) players performed a perception task of aligning a line on the golf ball towards the target hole and an action task of putting a ball to the target hole located 1 m and 4 m away. Novice players showed large perceptual aiming bias and small action aiming bias of putting. Yet, expert players showed neither bias in perceptual aiming nor in putting. This replicates earlier work (van Lier, van der Kamp, & Savelsbergh, 2011 Perception action in golf putting: Skill differences reflect calibration. Journal of Sport & Exercise Psychology, 33(3), 349–369) and was explained by the two-visual-pathway hypothesis. Despite the results showing some favorable support for the two-visual-pathway hypothesis, possible limitations are discussed.  相似文献   

5.
We assessed how golfers cope with the commonly observed systematic overshoot errors in the perception of the direction between the ball and the hole. Experiments 1 and 2, in which participants were required to rotate a pointer such that it pointed to the center of the hole, showed that errors in perceived direction (in degrees of deviation from the perfect aiming line) are destroyed when the head is constrained to move within a plane perpendicular to the green. Experiment 3 compared the errors in perceived direction and putting errors of novice and skilled players. Unlike the perceived direction, putting accuracy (in degrees of deviation from the perfect aiming line) was not affected by head position. Novices did show a rightward putting error, while skilled players did not. We argue that the skill-related differences in putting accuracy reflect a process of recalibration. Implications for aiming in golf are discussed.  相似文献   

6.
A 3D predictive golfer model can be a valuable tool for investigating the golf swing and designing new clubs. A forward dynamic model, which includes a four degree of freedom golfer model, a flexible shaft based on Rayleigh beam theory, an impulse-momentum impact model and a spin rate dependent aerodynamic ball model, is presented. The input torques for the golfer model are provided by parameterized joint torque generators that have been designed to mimic muscle torque production. These joint torques are optimized to create swings and launch conditions that maximize carry distance. The flexible shaft model allows for continuous bending in the transverse directions, axial twisting of the club and variable shaft stiffness as a function of the length. The completed four-part model with the default parameters is used to estimate the ball carry of a golf swing using a particular club. This model will be useful for experimenting with club design parameters to predict their effect on the ball trajectory and carry distance.  相似文献   

7.
The aim of this study was to identify and characterise individual differences in launch conditions measured from the same hole during four rounds of a professional golf tournament. Launch data from the 18th tee at the 2009 Dubai World Championship were used for the analysis. Self-organising maps (SOMs) were chosen to visualise the potentially non-linear relationship among the launch variables. Several distinctly different types of drives were identified on the output map. Drives which carried the furthest were not necessarily associated with the highest rates of ball speed. As indicated by carry distance, the longest drives had backspin rates of roughly 2700 rpm, a launch angle of 11 degrees, a straight or slightly left-to-right curving ball flight (for right-handers), and reached an apex of about 36 m. These values are specific to the 18th hole at the Dubai World Championship and differ from the general launch recommendations found in the literature.  相似文献   

8.
Backspin rate and friction coefficients have been studied for a range of commercially available wedges and multi-piece golf balls using a mechanical golfer and a modified pin-on-disc tester. Analysis of shot characteristics for wedges with three different surface roughness values and two golf ball types (two-piece ionomer covered and three-piece polyurethane covered) was carried out using the mechanical golfer, whilst pin-on-disc testing was performed to determine the friction coefficient between the different golf ball covers (with a range of hardness values) and steel discs with a range of surface roughness values seen for different wedges. It was found that the polyurethane covered balls (lower hardness) showed greater backspin than the ionomer covered balls (higher hardness), and showed higher friction values during the pin-ondisc testing. During the mechanical golfer tests, however, it was observed that the ionomer covered balls showed an increase in friction coefficient for increasing surface roughness, although the effect of differences in cover material types was greater than that of surface roughness variation for the same cover material within the range of commercially available wedge face surface roughnesses.  相似文献   

9.
Since clubface orientation at impact affects ball direction and ball spin, the ability to control clubface orientation is one of the most important skills for golfers. This study presents a new method to describe clubface orientation as a function of the clubshaft motions (i.e., swing plane orientation, clubshaft angle in the swing plane, and clubshaft rolling angle) during a golf swing and investigates the relationships between the clubshaft motions and clubface orientation at impact. The club motion data of driver shots were collected from eight skilled golfers using a three-dimensional motion capture system. The degrees of influence of the clubshaft motions on the clubface orientation were investigated using sensitivity analysis. The sensitivity analysis revealed that the swing plane horizontal angle affected the clubface horizontal angle to an extent of 100%, that the clubshaft angle in the swing plane affected both the clubface vertical and horizontal angles to extents of 74 and 68%, respectively, and that the clubshaft rolling angle affected both the clubface vertical and horizontal angles to extents of -67 and 75%, respectively. Since the method presented here relates clubface orientation to clubshaft motions, it is useful for understanding the clubface control of a golfer.  相似文献   

10.
When using a driver, the centre of pressure of a golfer shows a pattern that is characteristic of one of two distinct swing styles: the "front foot" style or the "reverse" style. The aim of this study was to establish whether these two swing styles are also evident when using other clubs, and if so, to determine whether golfers use the same swing style when using different clubs. Forty-six professional, amateur, and recreational golfers performed swings to hit a ball into a net placed 3 m away. Ten swings were performed for each of the driver, 3-iron, and 7-iron while standing on two force plates. The position of the golfer's centre of pressure parallel with the line of shot and relative to the feet was quantified at eight swing events that were identified from 200-Hz video. Cluster analysis confirmed that the front foot and reverse styles were evident in all three clubs, and most of the golfers (96%) used the same swing style for all three clubs. Golfers that used the reverse swing positioned their centre of pressure nearer to their toes at ball contact compared with golfers that used the front foot swing.  相似文献   

11.
Abstract

This study is a preliminary investigation into the use of cluster analysis to determine if different putting techniques existed in a group of club level golfers.

Putting at a hole 4?m away, the performances of 34 experienced golfers (age 55.3?±?17.8 years and handicap 15.3?±?6.9, range 3–27) were analysed using putter head kinematic and centre of pressure data. Two distinct putting techniques were identified (named as Arm putting and Body putting), this being the first time different putting techniques have been reported in the research literature. These techniques were defined by parameters related solely to movement of the centre of pressure along the line of the putt. Some players (17 of 34) moved between techniques when performing their putting trials. Neither technique produced more accurate putt results (P?=?0.783).

Putting technique was further analysed after grouping players according to handicap (similar skill level) or accuracy (similar putting performance). The lack of significant findings when players were re-analysed according to handicap or accuracy highlights the importance of the correct methodological approach to detecting technique differences.  相似文献   

12.
Abstract

When using a driver, the centre of pressure of a golfer shows a pattern that is characteristic of one of two distinct swing styles: the “front foot” style or the “reverse” style. The aim of this study was to establish whether these two swing styles are also evident when using other clubs, and if so, to determine whether golfers use the same swing style when using different clubs. Forty-six professional, amateur, and recreational golfers performed swings to hit a ball into a net placed 3 m away. Ten swings were performed for each of the driver, 3-iron, and 7-iron while standing on two force plates. The position of the golfer's centre of pressure parallel with the line of shot and relative to the feet was quantified at eight swing events that were identified from 200-Hz video. Cluster analysis confirmed that the front foot and reverse styles were evident in all three clubs, and most of the golfers (96%) used the same swing style for all three clubs. Golfers that used the reverse swing positioned their centre of pressure nearer to their toes at ball contact compared with golfers that used the front foot swing.  相似文献   

13.
Direction of spin axis and spin rate of the pitched baseball   总被引:1,自引:0,他引:1  
In this study, we aimed to determine the direction of the spin axis and the spin rate of pitched baseballs and to estimate the associated aerodynamic forces. In addition, the effects of the spin axis direction and spin rate on the trajectory of a pitched baseball were evaluated. The trajectories of baseballs pitched by both a pitcher and a pitching machine were recorded using four synchronized video cameras (60 Hz) and were analyzed using direct linear transform (DLT) procedures. A polynomial function using the least squares method was used to derive the time-displacement relationship of the ball coordinates during flight for each pitch. The baseball was filmed immediately after ball release using a high-speed video camera (250 Hz), and the direction of the spin axis and the spin rate (omega) were calculated based on the positional changes of the marks on the ball. The lift coefficient was correlated closely with omegasinalpha (r = 0.860), where alpha is the angle between the spin axis and the pitching direction. The term omegasinalpha represents the vertical component of the velocity vector. The lift force, which is a result of the Magnus effect occurring because of the rotation of the ball, acts perpendicularly to the axis of rotation. The Magnus effect was found to be greatest when the angular and translational velocity vectors were perpendicular to each other, and the break of the pitched baseball became smaller as the angle between these vectors approached 0 degrees. Balls delivered from a pitching machine broke more than actual pitcher's balls. It is necessary to consider the differences when we use pitching machines in batting practice.  相似文献   

14.
The purpose of this study was to construct and evaluate the reliability of an apparatus for testing golf putters with respect to distance and direction deviation at different impact points on the clubface. An apparatus was constructed based on the pendulum principle that allowed putter golf clubs to swing at different speeds. The mean speed of the club head before ball impact, and of the ball after impact, was calculated from time measurements with photocells. A pin profile rig was used to determine the directional deviation of the golf ball. Three different putters were used in the study, two that are commercially available (toe-heel weighted and mallet types) and one specially made (wing-type) putter. The points of impact were the sweet spot (as indicated by the manufacturer's aim line), and 1, 2 and 3 cm to the left and right of the sweet spot. Calculation of club head speed before impact, and of ball speed after impact (proportional to distance), showed errors < or = 0.5% of interval duration. The variability in ball impacts was tested by measuring time and direction deviations during 50 impacts on the same ball. The mean duration (+/- s) after ball impact in the test interval (1.16 m long) was 206 (0.8) ms and the standard deviation in the perpendicular spreading of the balls in relation to the direction of the test interval was 0.005 m. A test-retest of one putter on two consecutive days after remounting of the putter on the test apparatus showed less than 1% difference in distance deviation. We conclude that the test apparatus enables a precise recording of distance and direction deviation in golf putters as well as comparisons between different putters. The apparatus and set-up can be used in the laboratory as well as outdoors on the putting green.  相似文献   

15.
运用运动学研究方法对高尔夫球推杆头部技术动作进行量化分析,进而揭示推杆技术动作的运动学特征。对韩国釜山地区15名职业男子高尔夫运动员的推杆技术动作进行了研究,每名运动员在人工果岭上进行5次10.94m距离的推杆动作。运用三维技术动作分析系统(60Hz)对5次推杆动作的推杆头部进行了运动学分析。实验结果表明,推杆头部在各个区间的所需时间和移动距离都存在差异,在时间和空间上整个动作没有像钟摆一样摆动。  相似文献   

16.
In this study, we examined the influence of internal and external attention instructions on the performance of a pitch shot by golfers who were either highly skilled (mean handicap = 4) or low skilled (mean handicap = 26). Ten golfers in each skill group used a 9-iron to pitch a ball as close as possible to an orange pylon, which was located at distances of 10, 15, 20 or 25 m from the golfer. Focus of attention was manipulated within participants (counterbalanced across golfers). Under internal focus of attention instructions, the participants were told to concentrate on the form of the golf swing and to adjust the force of their swing depending on the distance of the shot. For the external focus of attention conditions, the participants were told to concentrate on hitting the ball as close to the target pylon as possible. The most intriguing finding was an interaction of skill with focus of attention instructions for variability in performance. Similar to the findings of Wulf and colleagues, the highly skilled golfers performed better with external attention instructions than with internal focus instructions. In contrast, the low-skill golfers performed better with the internal than with the external focus of attention instructions. These findings are discussed relative to theoretical issues in motor learning and practical issues for golf instruction.  相似文献   

17.
Eye movements are essential for both predictive and reactive control of complex motor skills such as the golf swing. We examined the use of a visually guided learning protocol to retrain an experienced golfer’s point-of-gaze immediately prior to execution of the full golf swing; his swing, and his gaze behaviour, had become established over more than a decade of practice and competition. Performance and eye movement data were obtained, from baseline, through intervention, to retention, for a total of 159 shots struck at a target 200 yards away. Results show that, at baseline, not only was the golfer’s point-of-gaze not at the intended/predicted location, at the top-rear of the ball, but there was also high trial-to-trial variability. A bespoke visual guidance protocol improved his gaze behaviour considerably, in terms of accuracy and consistency – and this was reflected in accuracy and consistency of his shots. Implications of oculomotor interventions for the relearning of established motor skills are discussed.  相似文献   

18.
The displacement of the golf ball struck by a driving club is affected by several player characteristics and equipment parameters and their interrelationships. Some modelling and simulation studies have shown a relationship between shaft length and clubhead speed, supported by a few experimental studies. The aim of the present study was to examine the relationship between driver length and ball launch conditions in an indoor test facility using a ball launch monitor. Nine males considered to be skilled golfers participated in the study. Four driving clubs of total length 117, 119, 124, and 132 cm were assembled from commercially available components and were used to strike golf shots while initial ball velocity, backspin rate, and launch angles were measured. Statistical analysis identified a significant difference in initial launch speed due to club length, a significant difference between participants, but no difference between the trials for a given golfer. A positive trend was noted between backspin and launch angle for all four clubs, and significant inverse associations between initial launch speed and backspin rate and launch angle. However, the combined launch conditions associated with increasing length were not considered optimal, with uncontrolled swingweight and moment of inertia effects considered to be limiting factors.  相似文献   

19.
Abstract

The purpose of this study was to construct and evaluate the reliability of an apparatus for testing golf putters with respect to distance and direction deviation at different impact points on the clubface. An apparatus was constructed based on the pendulum principle that allowed putter golf clubs to swing at different speeds. The mean speed of the club head before ball impact, and of the ball after impact, was calculated from time measurements with photocells. A pin profile rig was used to determine the directional deviation of the golf ball. Three different putters were used in the study, two that are commercially available (toe-heel weighted and mallet types) and one specially made (wing-type) putter. The points of impact were the sweet spot (as indicated by the manufacturer's aim line), and 1, 2 and 3 cm to the left and right of the sweet spot. Calculation of club head speed before impact, and of ball speed after impact (proportional to distance), showed errors ≤ 0.5% of interval duration. The variability in ball impacts was tested by measuring time and direction deviations during 50 impacts on the same ball. The mean duration (± s) after ball impact in the test interval (1.16 m long) was 206 (0.8) ms and the standard deviation in the perpendicular spreading of the balls in relation to the direction of the test interval was 0.005 m. A test – retest of one putter on two consecutive days after remounting of the putter on the test apparatus showed less than 1% difference in distance deviation. We conclude that the test apparatus enables a precise recording of distance and direction deviation in golf putters as well as comparisons between different putters. The apparatus and set-up can be used in the laboratory as well as outdoors on the putting green.  相似文献   

20.
Abstract

The purpose of this study was to determine the validity and reliability of a new method for measuring three-dimensional (3D) putting stroke kinematics using the TOMI® device. A putting robot and a high-speed camera were used to simultaneously collect data for the validity evaluation. The TOMI® device, when used in conjunction with standard 3D coordinate data processing techniques, was found to be a valid and reliable method for measuring face angle, stroke path, putter speed, and impact spot at the moment of ball contact. The validity of the TOMI® measurement system was quantified using the 95% limits of agreement method for each aforementioned variable. The practical significance of each validity score was assessed by incorporating the maximum estimated measurement error into the stroke of the putting robot for 10 consecutive putts. All putts were executed from a distance of 4 m on a straight and flat synthetic putting surface. Since all putts were holed successfully, the measurement error for each variable was deemed to be negligible for the purposes of measuring putting stroke kinematics. The influence of key kinematic errors, at impact, on the outcome of a putt was also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号