首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
<正>题目过抛物线y2=2px(p> 0)的焦点F(p/2,0)的弦(焦点弦)与抛物线相交于A(x_1,y_1),B(x_2,y_2).证明:y_1y_2=-p2=2px(p> 0)的焦点F(p/2,0)的弦(焦点弦)与抛物线相交于A(x_1,y_1),B(x_2,y_2).证明:y_1y_2=-p2,x_1x_2=p2,x_1x_2=p2/4.此抛物线性质问题的证法很多,下面是笔者在平时的教学中,归纳出几种方法,供读者欣赏.  相似文献   

2.
<正> 设 F1,F2是椭圆(x2/a2)+(y2/b2)=1(a>b>0)的焦点,过 F1,F2的弦交椭圆于 P 点,称∠F1PF2为椭圆的弦焦角,△F1PF2为椭圆中的焦点三角形。如图1所示,在△F1PF2中,P 与 A1,A2不重合,设∠F1PF2=2α,则有下列三个结论。一、|PF1|·|PF2|·cos2α=b2证明在△F1PF2中,设|PF1|=m,|PF2|=n,|F1F2|=2c。由余弦定理得:m2+n2-2mncos2α=4c2①,又 m+n=2a,  相似文献   

3.
一、圆锥曲线中常见问题1.不能灵活掌握圆锥曲线定义例1已知有一双曲线与x2/25+y2/16=1,且其虚轴长为4,有一点P0,距左焦点为6,求该点距右焦点为多少.错解:用待定系数法设双曲线方程为x2/a2-y2/b2=1.易知椭圆焦点为F1(3,0),F2(-3,0),因此b=2,得a=231/3.因|PF1-PF2|=2a,得|8-PF1i=431/2,得出PF2=8-431/2或PF26+421/2剖析:解题过程中仅仅考虑到了取绝对值,但是因题目中给出了条件"P0距离左焦点为6",因此可进一步判断结果有几个.正解:设双曲线方程为x2/a2-y2/b2=1,根据椭圆x2/25+y2/16=1可得焦点坐标为F1(3,0),F2(-3,0),因此b=231/2,假设P0位于右曲线,取右曲线距离左焦点最小距离为231/2+3>6.因此可判断出P0并不在右曲线上,只可能在左曲线上.求得结果为6+231/2.  相似文献   

4.
本文介绍圆锥曲线与中点弦有关的一个性质.性质1如图1,已知点P是椭圆(x2)/(a2)+(y2)/(b2)=1(a>b>0)的弦MN的中点,与MN平行的直线交椭圆于A,B两点,AP与椭圆交于点C,BP与椭圆交于点D,则CD∥AB.证明:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,  相似文献   

5.
一、问题的提出本文以一道课本习题为例,谈谈对这个问题的一点做法和体会,供读者参考.高中数学课本的各种版本的双曲线部分都有这样一道习题:证明双曲线的一个焦点到一条渐近线的距离等于双曲线的虚半轴长.证明:不妨设双曲线方程为(x2)/(a2)-(y2)/b=1(a>0,b>0),F是右焦点(c,0),渐近线为L:bx-ay=0,所以,F到L的距离为d=(|bc-a·0|)/(a2+b21/2=(bc)/c=b,故命题得证.为方便叙述,我们将它写成一般性结论.  相似文献   

6.
我们知道,椭圆x2/b2+y2/b2=1(a>b>0)、双曲线x2/a2-y2/b2=1(a>0,b>0)、抛物线x2=2py(p>0)都是对称轴为纵轴(y轴)的圆锥曲线.本文给出以上三种关于纵轴对称的圆锥曲线定点弦的一个新性质.  相似文献   

7.
为了不失一般性,我们将椭圆与双曲线方程统设为x2/m+y2/n=1,其中m,n不同时为负数,当m>0,n>0且m≠n时,方程表示椭圆;当m·n<0时,方程表示双曲线.首先来熟悉一下椭圆与双曲线的中点弦性质:设AB为圆锥曲线x2/m+y2/n=1的一条不垂直于坐标轴的弦,异于原点的点P(x0,y0)为AB中点,则kAB·kOP=-n/m.说明(1)此性质可由"点差法"很容易得  相似文献   

8.
<正>1引入例1:直线l过抛物线y2=4x的顶点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例2=4x的顶点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例2:直线l过抛物线y2:直线l过抛物线y2=16x的焦点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例3:直线l过(0,4)点,与抛物线x2=16x的焦点,与抛物线相交所得的弦为PQ,求PQ的中点M的轨迹方程。例3:直线l过(0,4)点,与抛物线x2=8y相交所得的弦为PQ,求PQ的中点M的轨迹方程。分析上述三个例题的轨迹方程,得到如下结论:过抛物线内对称轴上一定点(包括顶点)的直线截抛物线所得弦中点的轨迹是一条以该定点为顶点,通径为原抛物线的一半的抛物线,且所得抛物线开口方向和对称轴与原抛物线相同。  相似文献   

9.
<正>圆锥曲线的弦与过弦的端点的两条切线所围成的三角形称为阿基米德三角形.阿基米德三角形以其深刻的背景、丰富的内涵产生了许多有趣的性质,过焦点的阿基米德三角形的性质更是受到命题专家和数学爱好者的青睐.文[1]介绍了过焦点的阿基米德三角形的两个性质,在此基础上,文[2]得出了更一般性的结论.经过研究发现,此类过焦点的阿基米德三角形还具有另外三个优美性质及其应用.现先给出以下两个引理.引理1若P(x0,y0)是椭圆C:外任意一点,  相似文献   

10.
2011年山东理科卷第22题的第(1)问:直线l与椭圆x2/3+y2/2=1交于P(x1,y1),Q(x2,y2)两点,△OPQ的面积是61/2,证明:x12+x22和y12+y22均为定值.本题从两个动点出发,基于三角形面积的不变性,证明与动点有关的两个定值.行文简洁,引入深思.常规解法主要涉及直线方程、弦  相似文献   

11.
题目已知椭圆(x2)/(a2)+(y2)/(b2)=1(a>b>0)的离心率为(21/2)/2,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(21/2+1).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线PF1和PF2的斜率分别为k1、k2.证明:k1k2=1;  相似文献   

12.
<正>许多抛物线问题的解答都牵扯着一个重要的因素,那就是抛物线的焦点,而抛物线的焦点往往又会联系到抛物线的定义,由此会产生一系列问题,诸如焦点弦的弦长问题、焦点弦的弦所在的直线方程问题、抛物线方程问题等。一、焦半径与抛物线定义结合求值例1已知F是抛物线y2=x的焦点,  相似文献   

13.
以圆锥曲线上的一点、一个焦点及此焦点对应的顶点(与此焦点在圆锥曲线的同一条对称轴上且距此焦点近者)为顶点的三角形称为“焦顶三角形”.本文介绍圆锥曲线“焦顶三角形”的一个有趣性质,以飨读者.定理1设椭圆C:x2/a2+y2/b2=1(a>b>0)的一个“焦顶三角形”为AFB(其中F为C的一个焦点,A为F对应的顶点),设∠BAF=α,∠AFB=β,则tanαtanβ/2-1=e(e为C的离心率).  相似文献   

14.
潘俊 《数学教学》2012,(2):39-43
浙江省名校高考研究联盟2011届高三第二次联考理科卷的试题卷中出现了这样一道解析几何试题,原题如下:如图1,设F1、F2是椭圆C:x2/a2+y2/b2=1(a>b>0)的左、右焦点,A、B分别为其左顶点和上顶点,△BF1F2是面积为31/2的正三角形.  相似文献   

15.
好的高考试题总能给我们带来无限的遐想与火热的思考,2012年安徽高考解析几何试题便是成功的一例.题目(2012年安徽高考理科第20题)如图1,F1(-c,0),F2(c,0)分别是椭圆C:x2/a2+y2/b2=1(a>b>0)的左、右焦点,过点F1作x轴的垂线交椭圆的上半部分于点P,过点F2作直线PF2的垂线交直线x=a2/c于点Q;(Ⅰ)略;(Ⅱ)证明:直线PQ与椭圆C只有一个交点.思考1:结论能否推广到一般情况呢?  相似文献   

16.
<正>定义:如图1,设F1,F2是椭圆x2/a2+y2/b2=1(a>b>0)的焦点,P是椭圆上的任意一点(异于长轴的端点),则称△F1PF2为椭圆的焦点三角形.性质一:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为2b2/a.  相似文献   

17.
2010年全国高考安徽卷文科第17题(理科第19题)是:椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1、F2在x轴上,离心率e=1/2.(1)求椭圆E的方程;(2)求∠F1AF2的平分线所在直线的方程(以下简称问题).该问题是以椭圆焦点三角形内心为背景进行命制的,笔者认为它是一个很好的研究性学习问题.1.问题的推广定理1设点P是椭圆(x2)/(a2)+(y2)/(b2)=1(a>b>0)上除去四个顶点外的一点,点E、F分  相似文献   

18.
题目(2013年高考安徽卷·理18)已知椭圆E:x2/a2+y2/1-a2=1的焦点在x轴上.(1)若椭圆E的焦距为1,求椭圆E的方程;(Ⅱ)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q.证明:当a变化时,点P在某定直线上.该题立意朴实,耐人寻味,着重考查学生解决解析几何问题的基本思维方法.通过仔细研究,我们发现该题有"潜力可挖",为了能更清楚地理解问题  相似文献   

19.
<正>1.圆锥曲线涉及中点弦求曲线方程和直线方程的问题,经常用点差法设而不求解题例1已知椭圆E:x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=-(y_1-y_2)(y_1+y_2)/b2=-(y_1-y_2)(y_1+y_2)/b2。  相似文献   

20.
侯宝坤 《数学教学》2013,(2):35-37,48
考题(2012年全国高考江苏卷理科第19题):如图1,在平面直角坐标系xOy中,椭圆(x2)/(a2)+(y2)/(b2)=1(a>b>0)的左、右焦点分别为点F1(-c,0)、F2(c,0).已知(1,e)和(e,(31/2)/2)都在椭圆上,其中e为椭圆的离心率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号