首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Rutt  Alexis  Mumba  Frackson 《Science & Education》2019,28(9-10):1153-1179
Science & Education - Despite its positive impact on students’ understanding of the nature of science and science content knowledge, few secondary science teachers incorporate the history...  相似文献   

3.
This study explored a modified version of Japanese Lesson Study to determine whether and how it influenced preservice elementary teachers in their abilities to deliver science lessons that included nature of science (NOS) to their own students. We used a case study approach that focused on one subset of a cohort of preservice elementary teachers within their field placement settings. Data sources included lesson plans, lesson feedback forms, videotapes of delivered lessons, and videotapes of lesson study feedback sessions. Early in the semester peers provided feedback on content, and later in the semester peers provided feedback on classroom management as well as content during the lesson study feedback sessions. We found that preservice elementary teachers were able to provide feedback to their peers regarding how to include NOS in their science lessons, yet did not naturally included NOS connections within their own lessons.  相似文献   

4.
Self-efficacy beliefs that relate to teachers’ motivation and performance have been an important area of concern for preservice teacher education. Research suggests high-quality science coursework has the potential to shape preservice teachers’ science self-efficacy beliefs. However, there are few studies examining the relationship between science self-efficacy beliefs and science content knowledge. The purpose of this mixed methods study is to investigate changes in preservice teachers’ science self-efficacy beliefs and science content knowledge and the relationship between the two variables as they co-evolve in a specialized science content course. Results from pre- and post-course administrations of the Science Teaching Efficacy Belief Instrument-B (Bleicher, 2004) and a physical science concept test along with semi-structured interviews, classroom observations and artifacts served as data sources for the study. The 18 participants belonged to three groups representing low, medium and high initial levels of self-efficacy beliefs. A repeated measures multivariate analysis of variance design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants’ science self-efficacy beliefs and science conceptual understandings. Additionally, a positive moderate relationship between gains in science conceptual understandings and gains in personal science teaching efficacy beliefs was found. Qualitative analysis of the participants’ responses indicated positive shifts in their science teacher self-image and they credited their experiences in the course as sources of new levels of confidence to teach science. The study includes implications for preservice teacher education programs, science teacher education, and research.  相似文献   

5.
Pedagogical content knowledge (PCK) is a type of teacher knowledge to be developed by a teacher. PCK is said to contribute to effective teaching. Most studies investigated the development of PCK and its influence on students’ learning from the teachers’ perspectives. Only a limited number of studies have investigated the components of science teachers’ PCK that helped students’ learning from the perspective of students. Thus, it is the aim of this study to investigate the level of science teachers’ PCK from students’ perspective, in particular whether or not students of different achieving ability had different views of teachers’ PCK in assisting their learning and understanding. Based on the PCK research literature, six components of PCK have been identified, which were as follows: (1) subject matter knowledge, (2) knowledge of teaching strategies, (3) knowledge of concept representation, (4) knowledge of teaching context, (5) knowledge of students, and (6) knowledge of assessment in learning science. A questionnaire consisting of 56 items on a five-point Likert-type scale were used for data collection from 316 Form Four students (16 years old). One-way analysis of variance revealed that the differences in science teachers’ PCK identified by students of different achieving abilities were statistically significant. Overall, students of various academic achieving abilities considered all the components of PCK as important. The low-achieving students viewed all the components of PCK as being less important compared to the high and moderate achievers. In particular, low-achieving students do not view ‘knowledge of concept representation’ as important for effective teaching. They valued the fact that teachers should be alert to their needs, such as being sensitive to students’ reactions and preparing additional learning materials. This study has revealed that PCK of science teachers should be different for high and low-achieving students and knowledge of students’ understanding plays a critical role in shaping teachers PCK.  相似文献   

6.
This paper explores how a group of pre-service elementary science student teachers came to understand the development of their Pedagogical Content Knowledge (PCK) over the course of a semester??s study in a science methods course. At the start of the semester, PCK was introduced to them as an academic construct and as a conceptual tool that they could use to plan for, and assess, the development of their professional knowledge and practice as beginning science teachers. All participants were provided with a tool known as a CoRe (Content Representation) and the manner in which they worked with the CoRe was such that it supported them in planning for and assessing their own learning about teaching elementary science through a focus on the development of their PCK. Through analysis of data derived from the application of a CoRe based methodology (modified and adapted for this study) to the teaching of the science topic of Air, participants?? reasons for, confidence in, and perceived meaningfulness of their learning about science teaching could be examined. In so doing, the nature of participants?? PCK development over time was made explicit. The results illustrate real possibilities for ways of enhancing student teachers?? ongoing professional learning in teacher preparation and offer a window into how the nature of PCK in pre-service education might be better understood and developed.  相似文献   

7.
The application of information and communication technology in instruction is highly emphasized in the contemporary education of science teachers. This paper hence aims to explore science teachers’ perceptions of technological pedagogical content knowledge (TPACK) addressing teachers’ perceptions of the affordances of technology application in instruction. A total of 222 pre- and in-service science teachers in Singapore were surveyed. Structural equation models analysis was utilized to examine the model of TPACK involving the seven factors of technological knowledge (TK), pedagogical knowledge (PK), content knowledge (CK), technological content knowledge (TCK), technological pedagogical knowledge (TPK), pedagogical content knowledge (PCK), as well as synthesized knowledge of technology, pedagogy, and content (TPC). The results confirm the seven-factor model and indicate that the science teachers’ perceived TPC significantly and positively correlated with all the other TPACK factors. This paper further reveals the relationships between the science teachers’ perceptions of TPACK and their demographic characteristics such as teaching experience, gender, and age. The findings indicate that female science teachers perceive higher self-confidence in pedagogical knowledge but lower self-confidence in technological knowledge than males. Further, female in-service science teachers’ perceptions of TK, TPK, TCK, and TPC significantly and negatively correlate with their age.  相似文献   

8.
This study describes the influence of a secondary science methods program on secondary science preservice teachers’ views and enactment of nature of science and inquiry-based instructional practices. Built into the structure of this program were three cycles of practice teaching and reflection in which the preservice teachers focused on key pedagogical ideas in classroom settings with middle and high school students. The nine secondary preservice teachers improved both their understanding and enactment of inquiry and nature of science throughout the program period. This study provides evidence of the importance of incorporating multiple low-stakes practicum experiences that are closely tied to methods course goals that are highly scaffolded through both methods instructor and cooperating teacher support and tied to analytic self-reflection.  相似文献   

9.
In this article, we investigate the relationship between preservice teachers’ inquiry experience and their capacity to reflect on the challenges involved in implementing inquiry into classrooms. For data, we draw on the personal narratives of preservice science teachers enrolled in science instruction courses. Preservice teachers with extensive inquiry experiences perceive implementation challenges principally in terms of teaching and student learning. This contrasts with the perceptions of preservice teachers with limited inquiry experience for whom the main concerns relate to the negative perceptions of others, time, the curriculum, and materials. By identifying these perceptions, it may be possible to develop courses that assist limited and moderate-experience preservice teachers’ move toward the perceptions of their more inquiry experienced colleagues.  相似文献   

10.
This paper reports on a study which was designed to examine how CoRes (Content Representations) and PaP-eRs (Pedagogical and Professional-experience Repertoires) might impact the practice of science teachers by considering how they might value (or not) pedagogical content knowledge (PCK) as part of their professional knowledge. The paper is based on a 2?year longitudinal study that used CoRes and PaP-eRs as a form of intervention with a group of teachers (n?=?6) to determine how they interpreted, used and developed their understanding of PCK over time. The study concluded that the participating teachers developed rich understandings of their professional knowledge of science teaching and were of the view that CoRes and PaP-eRs were significant in shaping that development. As a consequence, the study also validates the use of CoRes and PaP-eRs as a meaningful methodology for examining science teachers?? PCK.  相似文献   

11.
Science vocabulary knowledge plays a role in understanding science concepts, and science knowledge is measured in part by correct use of science vocabulary (Lee et al. in J Res Sci Teach 32(8):797–816, 1995). Elementary school students have growing vocabularies and many are learning English as a secondary language or depend on schools to learn academic English. Teachers must have a clear understanding of science vocabulary in order to communicate and evaluate these understandings with students. The present study measured preservice teachers’ vocabulary knowledge during a science methods course and documented their use of science vocabulary during peer teaching. The data indicate that the course positively impacted the preservice teachers’ knowledge of select elementary science vocabulary; however, use of science terms was inconsistent in microteaching lessons. Recommendations include providing multiple vocabulary instruction strategies in teacher preparation.  相似文献   

12.
13.
Science & Education - The present study specifically focuses on science teachers’ views about scientific inquiry and their use of scientific inquiry in their lesson plans, which were...  相似文献   

14.
It is argued that the lack of consensus on what constitutes an inquiry-based approach makes the generalization about it difficult, because the concept is relatively unspecific and vague. This problem can partially be solved by constructing a set of activities promoted by inquiry, thus defining the inquiry objectives for classroom and laboratory teaching. Five high school and college Mexican teachers' PICK (pedagogical inquiry/content knowledge) was documented and assessed by means of Loughran, Mulhall and Berry's (2004) l-CoRe (inquiry content representation) developed by the authors through a proposal of a set of seven inquiry activities. They were also interviewed to construct the professional and pedagogical experience repertoires, a second tool by Loughran et al. (2004) to document PICK. It was observed that all teachers interviewed have used inquiry to modify their students' way of thinking, mainly through question posing. Some of them employed research as their main tool to promote scientific inquiry but others mentioned the lack of time to do it. It is interesting to notice that in spite of the fact that inquiry is out of the curriculum in M6xico, the teachers make use of it to improve their teaching practice. According to their answers, their actions in the classroom or the lab were classified within the three general approaches expressed by Lederman (2004): implicit, historical and explicit. It is concluded that a given teacher cannot be classified exclusively in one of them, because in his/her activities one general approach overlaps the others. The authors conclude that Lederman's classification has to be taken into account as an orientation to characterize a given activity of one teacher, even though the same teacher may use another activity characterized by other general approach. That is, Lederman's classification applies to characterize activities, not persons  相似文献   

15.
In this nested mixed methods study I investigate factors influencing preservice elementary teachers’ adaptation of science curriculum materials to better support students’ engagement in science as inquiry. Analyses focus on two ‘reflective teaching assignments’ completed by 46 preservice elementary teachers in an undergraduate elementary science methods course in which they were asked to adapt existing science curriculum materials to plan and enact inquiry-based science lessons in elementary classrooms. Data analysis involved regression modeling of artifacts associated with these lessons, as well as in-depth, semester-long case studies of six of these preservice teachers. Results suggest that features of the existing science curriculum materials, including measures of how inquiry-based they were, have a relatively small influence on the preservice teachers’ curricular adaptations, while teacher-specific variables account for a much greater percentage of the variance. Evidence from the case studies illustrates the critical impact of the preservice teachers’ field placement contexts as an explanatory, teacher-specific factor in their curricular adaptations. These findings have important implications for science teacher educators and science curriculum developers, in terms of not only better understanding how preservice teachers engage with curriculum materials, but also how programmatic features of teacher education programs influence their ability to do so.  相似文献   

16.
The purpose of the present study is to examine content knowledge (CK) and pedagogical content knowledge (PCK) of Greek teachers in number sense and specifically in mental calculations with rational numbers (fractions, decimals and percentages). Examined within the framework of CK were the type of strategies employed by teachers and the extent of the repertoire of these strategies, which provides an indication of their flexibility. Teachers’ CK performance in mental calculations with rational numbers was compared with the extent of their strategic repertoire as well as with the PCK they employed when teaching mental calculations with rational numbers. The data revealed that the teachers’ high CK performance in mental calculations with rational numbers is positively influenced by the existence of an extensive strategic repertoire. Furthermore, it was found that a high CK performance and an extensive strategic repertoire in mental calculations with rational numbers positively influence the PCK of mental calculations with rational numbers.  相似文献   

17.
18.
This study explored the pedagogical content knowledge (PCK) and its development of four experienced biology teachers in the context of teaching school genetics. PCK was defined in terms of teacher content knowledge, pedagogical knowledge and knowledge of students’ preconceptions and learning difficulties. Data sources of teacher knowledge base included teacher-constructed concept maps, pre- and post-lesson teacher interviews, video-recorded genetics lessons, post-lesson teacher questionnaire and document analysis of teacher's reflective journals and students’ work samples. The results showed that the teachers’ individual PCK profiles consisted predominantly of declarative and procedural content knowledge in teaching basic genetics concepts. Conditional knowledge, which is a type of meta-knowledge for blending together declarative and procedural knowledge, was also demonstrated by some teachers. Furthermore, the teachers used topic-specific instructional strategies such as context-based teaching, illustrations, peer teaching, and analogies in diverse forms but failed to use physical models and individual or group student experimental activities to assist students’ internalization of the concepts. The finding that all four teachers lacked knowledge of students’ genetics-related preconceptions was equally significant. Formal university education, school context, journal reflection and professional development programmes were considered as contributing to the teachers’ continuing PCK development. Implications of the findings for biology teacher education are briefly discussed.  相似文献   

19.
We investigated the pedagogical content knowledge (PCK) of nine experienced chemistry teachers. The teachers took part in a teacher training course on students’ difficulties and the use of models in teaching acid–base chemistry, electrochemistry, and redox reactions. Two years after the course, the teachers were interviewed about their PCK of (1) students’ difficulties in understanding acid–base chemistry and (2) models of acids and bases in their teaching practice. In the interviews, the teachers were asked to comment on authentic student responses collected in a previous study that included student interviews about their understanding of acids and bases. Further, the teachers drew story-lines representing their level of satisfaction with their acid–base teaching. The results show that, although all teachers recognised some of the students’ difficulties as confusion between models, only a few chose to emphasise the different models of acids and bases. Most of the teachers thought it was sufficient to distinguish clearly between the phenomenological level and the particle level. The ways the teachers reflected on their teaching, in order to improve it, also differed. Some teachers reflected more on students’ difficulties; others were more concerned about their own performance. Implications for chemistry (teacher) education are discussed. Submitted to Research in Science Education  相似文献   

20.
Providing authentic encounters with secondary students may be a way to provide a realistic image of students’ academic challenges, and enhance preservice teachers’ skills, knowledge, and dispositions to better address the needs of their future academically, linguistically, socially, and culturally unique students. The purpose of our study was to examine preservice teachers’ experiences in mentoring at-risk high school adolescents. Specifically, we sought to identify the connections to pedagogy associated with their mentoring experience. Major findings generated five themes: (a) relationship building, (b) academic immediacy, (c) embracing a professional lens, (d) a student-centered pedagogical philosophy, and (e) self-efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号