首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
(17)已知复数 z的幅角为 6 0°,且 |z- 1|是 |z|和 |z- 2 |的等比中项 .求 |z|.解法 1 由“|z- 1|是 |z|和 |z- 2 |的等比中项”,得 |z- 1|2 =|z|· |z- 2 |.式子 |z- 1|2 =|z|· |z- 2 |左、右两边是二次齐次式 ,同除以 |z|2 ,得 1- 1z2 =1· 1- 2z ,若把 1z看作一个整体 ,且 argz=6 0°,arg 1z=30 0°,可设 1z=a- 3ai(a>0 ) ,代入上式得 |1- a+3ai|2 =|1- 2 a+2 3ai |,即 (1- a) 2 +3a2 =(1- 2 a) 2 +12 a2 .两边平方并整理得 4 a2 -4 a- 1=0 ,a=1+22 ,即 1z =2 a=1+2 ,则 |z|=12 a=11+2 =2 - 1.(楼可飞 供稿 )解法 2 设 z=r2 +32 ri,…  相似文献   

2.
因为零向量不起眼 ,往往被忽视 ,这是不公平的 ,我们应学会从平凡中发现奇异 .仔细分析 ,零向量是一个特殊向量 ,它有两个特征 :( 1)方向不定 ;( 2 )长度为 0 .利用这些特征我们可以得到如下问题链1 由特征 ( 1)引发的问题链( 1)已知 :O是圆内接正三边形 P1 P2 P3 的圆心 .求证 :OP1 +OP2 +OP3 =O证明 :设 a=OP1 +OP2 +OP3 ,将 OP1 、OP2 、OP3 均绕点 O逆时针旋转 12 0°,得到一个新向量 b=OP2 +OP3 +OP1 .所以 a=b,即 a绕 O旋转 12 0°后 ,仍为 a,说明 a的方向不定 ,故 a为零向量 .所以 OP1 +OP2 +OP3 …  相似文献   

3.
命题 :设点 P(x0 ,y0 ) ,⊙ O:x2 + y2 =r2 ,直线 l:x0 x + y0 y =r2则 1当点 P在圆上时 ,直线 l与⊙ O相切 ;2当点 P在圆外时 ,直线 l与⊙ O相交 ;3当点 P在圆内时 ,直线 l与⊙ O相离 .1 证明在直线 l上任取一点 Q(x,y) ,因为向量 OP =(x0 ,y0 ) ,OQ =(x,y)所以 OP .OQ =x0 x + y0 y =r2即 | OP| .| OQ| .cos∠ POQ =r2因为 l的一个方向向量 v=(-y0 ,x0 )所以 v.OP =0 OP⊥ l故圆心 O到 l的距离d =| OQ| .cos∠ POQ =r2| OP|| OP| >r时 ,d r;故命题为真 .2 画法已知点 P和⊙ …  相似文献   

4.
探索型1.解 :( 1)依题意可得 :x1+ x2 =2 ,x1· x2 =k由 y=( x1+ x2 ) ( x12 + x2 2 -x1x2 ) =( x1+ x2 ) [( x1+ x2 ) 2-3 x1x2 ] =2 ( 4 -3 k) =8-6k 即 y=8-6k.( 2 )∵方程有两实数根∴ Δ=b2 -4ac=4-4k≥ 0 .∴ k≤ 1.由此得 -6k≥ -6. ∴y=8-6k≥ 8-6=2 .即当 k=1时 ,y有最小值 2 ,没有最大值 .2 .( 1)解 :∵∠ BAC=∠ BCO,∠ BOC=∠ COA=90°,∴△ BCO∽△ CAO,∴ AOCO=COOB.∴ CO2 =AO· OB.由已知可得 :AO=| x1| =-x1,OB=| x2 | =x2 .∵ x1x2 =-m<0 ,∴ m>0 .∴ CO=m,AO· OB=m.∴ m2 =m,∴ m=1,m=0 (舍去 ) .∴…  相似文献   

5.
初学平面向量这部分内容时,同学们常常会出现各种错误.现列举几种常见错误,供大家辨析.一、两向量夹角的意义不清例1△ABC三边长均为2,且BC=a,CA=b,AB=c,求a.b+b.c+c.a的值.错解:∵△ABC三边长均为2,∴∠A=∠B=∠C=60°,|a|=|b|=|c|=2.∴a.b=|a|.|b|cosC=2,同理可得b.c=c.a=2,∴a.b+b.c+c.a=6.图1评析:这里误认为a与b的夹角为∠BCA,两向量的夹角应为平面上同一起点表示向量的两条有向线段间的夹角,范围是[0,π].因此a与b的夹角应为π-∠BCA.正解:如图1,作CD=BC,a与b即向量BC与CA的夹角为180°-∠BCA=120°.∴a.b=|a|.|b|cos12…  相似文献   

6.
一些极值问题,仅靠代数方法有时感到无从下手,如果建立几何模型,运用数形结合的方法,则非常简便,下面以两例来说明数形结合求极值·例1求代数式|x+1|+|x-5|+|x+3|的最小值·设解数:如轴图上1有所A示、B·、C、P四点,其中A对应-1,B对应5,C对应-3,P对应x,则PA=|x+1|、PB=|x-5|、PC=|x+3|所以PA+PB+PC=|x+1|+|x-5|+|x+3|由几何知识可知,当P在A处时,PA+PB+PC最小·即:当x=-1时,代数式|x+1|+|x-5|+|x+3|的值最小,且最小值为8·例2求代数式x2+4+x2-12x+37的最小值·解:因为x2+4+x2-12x+37=x2+22+(6-x)2+12,所以设线段AB长为6,点D、E…  相似文献   

7.
所谓椭圆焦点三角形是指椭圆上任一点与其两焦点构成的三角形 .本文以椭圆 x2a2 + y2b2 =1  (a >b>0 )为例 ,利用其定义及性质来证明△F1PF2 的十一个性质 .记P(x0 ,y0 ) ,∠F1PF2 =γ ,∠PF1F2 =α ,∠PF2 F1=β ,c =a2 -b2 ,e =ca ,则有以下性质 :性质 1 △F1PF2 的周长为 2a + 2c .证明略 .性质 2  |PF1| =a +ex0 ,|PF2 | =a -ex0 .证明略 .性质 3 △PF2 F1的面积S =b2 tan γ2 .证明 设 |PF1| =m ,|PF2 | =n ,则△PF2 F1的面积S =12 mnsinγ .由椭圆定义得m +n =2a .又由余弦定理得4c2 =m2 +n2 - 2mncosγ=(m +n) 2 -…  相似文献   

8.
本文介绍椭圆与双曲线的一个有趣性质,并说明其应用. 性质 1 设P点是椭圆b2x2+a2y2=a2b2(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点,记∠F1PF2=θ,则|PF1|·|PF2|=2b2/1+cosθ 简证:由椭圆定义有|PF1|·|PF2|=2a (1) 在△PF1F2中,由余弦定理有|PF1|2+|PF2|2-2|PF1|·|PF2|cosθ=4c2 (2) (1)2-(2)化简得  相似文献   

9.
本文介绍椭圆与双曲线的一个有趣性质,并说明其应用. 性质 1 设P点是椭圆b2x2+a2y2+a2b2(a>b>0)上异于长轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,则|PF1|·|PF2|=2b2/1+cosθ 简证:由椭圆定义有|PF1|+|PF2|=2a (1) 在△PF1F2中,由余弦定理有 |PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ=4e2 (2) (1)2-(2)化简得 |PF1|·|PF2|= 2b2/1+cosθ 性质2 将性质1中的 b2x2+a2y2=a2b2改为b2x2-a2y2=a2b2(a>0,b> 0),其余不  相似文献   

10.
题目 :P是椭圆x21 6 y22 5=1上的点 ,F1、F2为其焦点 ,若∠F1PF2 =90°,求△PF1F2 的面积 .解 :∵S△PF1F2 =12 |F1F2 |·|PF2 |,而|PF1| |PF2 |=1 0 ,|PF1|2 |PF2 |2 =|F1F2 |2 =3 6 ,联立求解得|PF1|·|PF2 |=1 0 0 -3 62 =3 2 .∴ S△PF1F2 =1 6 .一、以上解答正确吗 ?以上解答看上去无懈可击 ,但实际不正确 .我们再看以下解法 :其解法思路是先求出满足条件的P点坐标 ,然后再求△PF1F2 的面积 ,设满足题目条件的点P坐标为P(x0 ,y0 ) .∵∠F1PF2 =90°,∴ ( y0 3 ) ( y0 -3 ) x0…  相似文献   

11.
第 2 1届全苏数学竞赛有这样一道试题 :已知 :a,b,c,m,n,p均为正数 ,且满足 a+ m=b+ n=c+ p=k,求证 :an+ bp+ cm相似文献   

12.
《中学数学月刊》2003,(2):47-49
1.下列命题是真命题的是 (   )1 a∥b 存在唯一的实数 λ,使 a=λb;2 a∥b 存在不全为零的实数 λ,μ,使 λa+μb=0 ;3a与 b不共线 若存在实数 λ,μ,使 λa+ μb=0 ,则 λ=μ=04 a与 b不共线 不存在实数λ,μ,使λa+ μb=0( A) 1和 4  ( B) 2和 3  ( C) 1和 2 ( D) 3和 42 .设 a,b为非零向量 ,则下列命题中 ,1 | a+ b| =| a- b| a与 b有相等的模2 | a+ b| =| a| + | b| a与 b的方向相同3| a| + | b|≤ | a- b| a与 b的夹角为钝角4 | a+ b| =| a| - | b| | a|≥ | b|且 a与 b方向相反真命题的个数是 (  )( A) 0  ( B) 1  (…  相似文献   

13.
许多命题若能灵活运用共轭复数的性质处理 ,可达到事半功倍的目的 ,使解题更加简捷 .1 活用基本性质知识要点 z=z;  | z| =| z| ;z z=| z| 2 =| z| 2 ; z1 ±z2 =z1 ±z2 ;z1 · z2 =z2 · z2 ;z1 z2 =z1 z2.例 1 设复数 z1 和 z2 满足关系式 :z1 z2 Az1 A z2 =0 ,且 A≠ 0 ,A∈ C.证明 :(1) | z1 A|· | z2 A| =| A| 2 ;(2 ) z1 Az2 A=| z1 Az2 A| .(1987年全国高考题 )剖析 若用常规方法 ,即设 zj=xj yji(j=1,2 ) ,A=a bi(xj,yj,a,b∈R) ,然后转化为实数集上的问题求解 .然而因字母太多 ,运算太繁 .利用共…  相似文献   

14.
在解有关解析几何问题时,可先根据题设条件,构造一个辅助圆,然后运用平几中有关圆的特性将问题转化,使其获得简解·【例1】已知圆O:x2+y2=R2及圆外一点P(a,b),过点P作圆O的两条切线PA、PB,切点分别为A、B,求直线AB的方程·分析:以P为圆心,以PA为半径构造一个圆,可将问题转化为求两圆的公共弦方程,从而简便求解·如图,由切线长定理及切线的性质得PA=PB,且|PA|2=|PO|2-|OA|2,于是以P为圆心,以PA为半径的圆方程:(x-a)2+(y-b)2=a2+b2-R2,①它与已知圆O:x2+y2=R2,②交于A、B两点·故由①—②得ax+by-R2=0,即为所求直线AB的方程·…  相似文献   

15.
解答含有绝对值的问题时 ,我们习惯上考虑化去绝对值的方法。这样常常要分类讨论 ,过程较为繁琐。事实上 ,对于某些问题 ,利用添绝对值的变形 ,可避免分类讨论情况的发生。例 1 已知 ab<0 ,求 a2 |b|- b2 |a|+ab(|a|- |b|)的值。解 :由 ab<0 ,a2 >0 ,b2 >0 ,得 a2 =|a2 |,b2 =|b2 |,ab=- |ab|。原式 =|a2 |· |b|- |b2 |· |a|+(- |ab|) (|a|- |b|) =|a2 b|- |ab2 |- |a2 b|+|ab2 |=0。例 2 若 a>0 ,b<0 ,则方程 |x- a|+|x- b|=a- b的解集是。解 :注意到 a- b=a+(- b) >0 ,∴ |x- a|+|x- b|=|a- b|,∴ |a-x |+|x- b|=|(a- x) +(x- b) |,∴…  相似文献   

16.
单位向量是向量的一个重要概念,本文例谈对它的深层次理解巧解题.1应用单位向量定义从数上来深层次理解巧解题向量a为单位向量|a|=1;因为a|a|=||aa||=1,所以|aa|是非零向量a方向上的单位向量.例1(2002年全国高中数学联赛山东赛区预赛题)设O为△ABC内任一点,SA,SB,SC分别表示△BOC,△COA,△AOB的面积.求证:SA·OA SB·OB SC·OC=0.讲解由于三角形面积可用其内角的正弦表示,因此本题实质上是一个向量与三角的综合题.设∠BOC=α,∠COA=β,∠AOB=γ,e1、e2、e3分别表示OA、OB、OC上的单位向量,即e1=|OOAA|,e2=|OOBB|,e3=O…  相似文献   

17.
复数中 ,由 | z| 2 =z· z极易推导出两个复数积的性质 :性质 1 设 z1 ,z2 ∈C,| z1 | =r1 ≠ 0 ,| z2 |= r2 ≠ 0 ,且 r2 z1 + r1 z2 =z0 ≠ 0 ,则有 z1 · z2 =r1 · r2 · z20| z0 | 2 .证明 ∵ r2 z1 + r1 z2 =1r1 r2( r1 · r22 · z1 +r21 ·r2 ·z2 )= 1r1 r2( r1 ·z2 ·z2 ·z1 + r2 ·z1 ·z1 ·z2 )=z1 · z2r1 · r2( r1 ·z2 + r2 ·z1 )=z1 · z2r1 · r2·r1 ·z2 + r2 · z1 ,∴z1 ·z2 =r1 · r2 ( r2 z1 + r1 z2 )r1 · z2 + r2 · z1=r1 · r2 · z0z0=r1 · r2 · z20| z0 | 2 .推论 1 若 | z1 | =| z2 | =r≠ 0 ,…  相似文献   

18.
1998年湖北省黄冈市初中数学竞赛试卷中有这样一题试题 :使 | a- b| =| a| + | b|成立的条件是(  ) .( A) ab>0  ( B) ab>1( C) ab≤ 0  ( D) ab≤ 1解  | a- b| =| a| + | b| | a- b| 2 =( | a| + | b| ) 2 - ab=| ab| ab≤ 0 .故应选 C.利用这道竞赛题的结论解可化为 | a- b|= | a| + | b|的方程 ,可获得十分简捷的解法 .例 1 方程 | x- 2 | + | x- 3| =1的实数解的个数有 (  ) .( A) 1个   ( B) 3个( C) 4个  ( D)无数多个(第四届《祖冲之杯》初中数学邀请赛试题 )解 ∵ | x- 2 | + | x- 3| =1 =| ( x- 2 )- ( x- 3) | …  相似文献   

19.
构造向量巧证不等式   总被引:1,自引:0,他引:1  
向量是高中教材的新增内容 ,作为现代数学重要标志之一的向量引入中学数学后 ,给中学数学带来无限生机。笔者在阅读文 [1 ]发现 ,该文所举的各个例子 ,均可通过构造向量 ,利用向量不等式 :m·n≤ |m|·|n|( )轻松获证 ,显示了向量在证明不等式时的独特威力。例 1 已知a、b、c∈R ,且a +2b +3c=6,求证a2+2b2 +3c2 ≥ 6。证明 构造向量 :m =(a ,2b ,3c) ,n =( 1 ,2 ,3 ) ,由向量不等式 ( )得6=a +2b +3c≤a2 +2b2 +3c2 · 1 +2 +3 ,∴a2 +2b2 +3c2 ≥ 6。例 2 已知 :a、b∈R+ ,且a +b =1 ,求证(a +1a) 2 +(b +1b) 2 ≥2 52 。证明 构造…  相似文献   

20.
作业中,我给同学们布置了一道题:已知双曲线的中心在坐标原点,焦点在x轴上,F1、F2分别为左右焦点,双曲线右支上有一点P使∠F1PF2=π3,且△F1PF2的面积等于23姨,又双曲线的离心率为2,求双曲线的方程郾部分同学采用了如下解法:解:设双曲线的方程为:x2a2-y2b2=1(a>0、b>0)∵离心率e=ca=2郾∴c=2a,故b2=3a2∴双曲线方程可化为:x2a2-y23a2=1设P(x0,y0)则x02a2-y023a2=1……………………①∵S△F1PF2=12PF1·PF2sin∠F1PF2=23姨即12PF1·PF2·3姨2=23姨∴PF1·PF2=8由焦半径公式得PF1=ex0+a,PF2=ex0-a∴e2x02-a2=8故x02=a2+84…………  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号