首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中学理科》2007,(11):51-54
要点复习 1.两个____的三角形称为全等三角形. 2.全等三角形____相等;____相等.  相似文献   

2.
三角形有三条重要线段,即三角形的中线、内角平分线和高.而且全等三角形对应中线、对应内角平分线、对应高相等.我们还知道,要证明两个三角形全等,必须具备三个对应元素相等,即:SAS、ASA、AAS、SSS.如果两个三角形本身具备两个边或两个角对应相等,第三个元素是对应中线,对应内角平分线或对应高相等,那么这两个三角形是否全等呢?下面就举几例来探讨一下三角形三条重要线段与全等之间的关系.  相似文献   

3.
第1课时三角形中的线段、角及其关系知识梳理通过本课时的复习,我们可以进一步理解三角形及其内角、外角、中线、高、角平分线等概念,会按照三角形边的关系和内角的大小对三角形进行分类,了解三角形的稳定性;能够证明三角形的内角和定理,掌握它的推论;能够证明三角形的任意两边之和大于第三边;能够运用重要的结论解决一些简单的实际问题.  相似文献   

4.
分析:两个三角形全等是对的,但说明的理由不正确.三个角对应相等不能作为三角形全等的识别方法.因为三个角对应相等的两个三角形不一定全等.  相似文献   

5.
利用三角形全等证明线段相等是一种常见的方法,但有时不能直接应用,需要根据条件作出辅助线来构造全等三角形,使题目中的条件集中.下面介绍几种常用的构造全等三角形的方法.  相似文献   

6.
李衡 《初中生》2008,(9):26-29
利用全等三角形的性质可以证明分别属于两个三角形中的线段或角相等,在证明线段或角相等时,解题的关键往往是根据条件找到两个可能全等的三角形,再证明这两个三角形全等,最后得出结论,下面介绍几种寻找全等三角形的方法。  相似文献   

7.
能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫做全等三角形.两个三角形全等时,互相重合的顶点州做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.夹边就是三角形中相邻两角的公共边.夹角就是三角彤中有公共端点的两边所成的角.[第一段]  相似文献   

8.
综观2008年全国各地的中考试卷,有关全等三角形的试题主要有以下几类. 1.利用三角形全等证明线段相等  相似文献   

9.
一问:为什么在用符号表示两个三角形全等时,要把对应顶点写在对应的位置上?答:全等三角形的定义:“能够完全重合的两个三角形叫做全等三角形”所描述的实质是:这两个三角形的三对对应边,三对对应角分别对应相等,共有六对相等关系.  相似文献   

10.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

11.
薛蓓 《初中生辅导》2011,(16):29-32
全等三角形识别方法有:(1)边边边(SSS):如果两个三角形的三边分别对应相等,那么这两个三角形全等;(2)边角边(SAS):如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等;(3)角边角(ASA):如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等;  相似文献   

12.
徐小芬 《初中生》2009,(9):74-75
全等三角形的对应线段相等,对应角相等.对于有些证明线段或角相等的问题,即使没有全等三角形,可以添加辅助线,构造全等三角形证题.现介绍构造全等三角形的三种方法,供你学习时参考.  相似文献   

13.
利用三角形全等是证明线段或角相等的重要方法之一,但有时不能直接应用,就需要根据条件通过作辅助线构造全等三角形.构造全等三角形的方法主要有翻折、旋转、平移、截取、延长等.[第一段]  相似文献   

14.
《中学生数理化》2010,(4):8-9,45
知识梳理通过本课时的复习,我们应达到如下目标.1.理解全等三角形的概念,能识别全等三角形中的对应边和对应角.  相似文献   

15.
…BCD是正方形,:AB=AD,乙ABM=乙D二90“,:‘△ABM鉴△ADQ. :.刀对=DQ,乙4二乙2二乙1,乙M=乙AQD.丫AB// CD,…乙AQD=乙BAQ二乙l 乙3=乙4 乙3=乙材月P.…乙M=乙对八P.…尸咤二产叽了=尸召 召材. .’.P4=产毋 DQ.跳出“全等三角形”的圈子@蒋庆瑛!贵州~~  相似文献   

16.
构造全等三角形是证明两条线段相等的常用方法,也是初中数学教学的一个重点和难点.构造全等三角形的依据是什么,如何构造全等三角形,学生往往知其然而不知其所以然.基于此,笔者给出构造全等三角形证明两条线段相等的辅助线的思考方法,它主要有五个步骤:找出线段所在三角形、确定第三个顶点、列出对应关系、作出辅助线、证明三角形全等.  相似文献   

17.
1 教材内容分析 1.1 全章主要内容 本章主要内容是探讨三角形全等的条件及如何通过三角形全等的方法证明两条线段、两个角相等和解决实际问题.  相似文献   

18.
全等三角形是初中数学中的重要知识点,与它相关的题型十分丰富,精彩纷呈,现将全等三角形的主要题型举例介绍如下,供大家学习时参考。一、命题判定型例1(2011年上海市中考题)下列命题中,真命题是()A.周长相等的锐角三角形都全等  相似文献   

19.
利用三角形全等是证明线段和角相等的最重要、最活跃的方法之一,那么怎样才能快速找出说明两个三角形全等?下面介绍四种常见的形体,供同学们参考.  相似文献   

20.
3.角平分线(1)角平分线的性质:(2)角平分线的定理及逆定理:(3)三角形角平分线交于一点,这点到三角形三边距离相等:(4)在角的两边截相等的线段,构造全等三角形:(5)在角的平分线上取一点.向角的两边作垂线.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号