首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对一类数列和sum k=1 to n K、sum k=1 to n(K~2) sum k=1 to n K(K~3)及sum k=1 to n (K(2K-1))、sum k=1 to n((2K-1)~2)、sum k=1 to n ((2K-1)~3)试用求面积的方法给出其公式。这种方法还可推广至更高次的和。  相似文献   

2.
sum from K=1 to n K~2、sum from K=1 to n K~3、的公式很容易用数学归纳法证明,但在证明之际,学生常常会想到公式是怎样来的?能不能从形的角度去直观的理解它? 图1,左部是一个由边长为1,2,…n的正方形叠成的梯状图形,显然面积为sum  相似文献   

3.
本文利用公式sum from k-1 to n(K=(n(n+1)/2))、sum from k-1 to n(K~2=(1/6)n(n+1)(2n+1))给出了六种不同的关于公式sum from k=1 to n(K~3=[n(n+1)/2)]~2)的建立方法。  相似文献   

4.
《数学教学通讯》1990在第5期发表了周学璋同志“sum from k=1 to n k~2、sum from k=1 to n k~3公式的几何解释”的文章。作者是用面积来解释前者,用体积来解释后者的。如果用体积来解释前者,用面积来解释后者,会显得更简便。把sum from k=1 to n K~2个边长为1的正方体如图1放置,  相似文献   

5.
比值审敛法解决的是正项级数sum from a=1 to ∞(n_a)的敛、散问题。对任意项级数。比值法无能为力。但任意项级数sum from a=1 to ∞(n_a)的敛、散性,依赖于sum from a=1 to (|n_a|)。即正项级数的敛、散性。对此,有两种情况:第一,若sum from a=1 to ∞(|n_a|)收敛。则sum from a=1 to ∞(n_a)绝对敛。第二,若sum from a=1 to ∞(|n_a|)发散,则sum from a=1 to ∞(n_a)可能收敛,也可能发散。即对后者,sum from a=1 to ∞(n_a)敛、散性书上没有定论。但通过实践,我们发现,若sum from a=1 to ∞(|n_a|)的发散性是由比值法判断而得,则sum from a=1 to ∞(n_a)一定也发散。  相似文献   

6.
对级数sum from n=1 to ∞(8nbn)的收敛性可用阿贝尔、犹利克雷判别法,而对其绝对收敛性却提文甚少;本文根据比较判别法直接研究级数sum from n=1 to ∞(a_nb_n)的绝对收敛性,并得出结果,用这结果判定了些级数的敛散性显得更加有效和方便。 一、定理及推论 1、定理:设sum from n=1 to ∞(a_n)是一无穷级数,{bn}是一序列。若序列{bn}有畀且级数sum from n=1 to ∞(a_n)绝对收敛,则级数sum from n=1 to ∞(a_nb_n)绝对收敛;若序列{1/bn)有界且sum from n=1 to ∞|a_n|发散,则sum from n=1 to ∞n|a_nb_n|发散。 证明:假设sum from n=1 to ∞(a_n)绝对收敛且{b_n}有界,则存在正数M,使得|bn|相似文献   

7.
本文采用Lagrange乘数法获得了琴生不等式的加强形式:设a_i>0(i=1,…,n),如果r>1,那么(sum from a_i)~r≥sum from a_i~r-+(n~r-n)[1/n(sum from a~(-1)]~(-r)、如果o相似文献   

8.
我们知道,柯西不等式:a_i,b_i∈R,则sum from i=1 to n a_i~2 sum from i=1 to n b_i~2≥(sum from i=1 to n a_ib_i)~2……(1)当且仅当a_i=kb_i(i=1,2,…,n)不等式等号成立。它可以作如下变形: 由(1)得(sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2)≥sum from i=1 to n a_ib_i,添项变为sum from i=1 to n a_i~2 2 (sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2) sum from i=1 to n b_i~2≥sum from i=1 to n a_i~2 2sum from i=1 to n a_ib_i sum from i=1 to n b_i~2,或sum from i=1 to n a_i~2-2 (sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2) sum from i=1 to n b_i~2≤sum from i=1 to n a_i~2-2 sum from i=1 to n a_i b_i sum from i=1 to n b_i~2,分别配方,并开方转  相似文献   

9.
《中学数学教学》1997第5期第34页刊登的《数形结合法解题》一文中“预备定理”的表述是错误的,反例很容易举,如:-(K~(1/k))/2、(K~(1/k))/2∈[-K~(1/k),0)∪(0,K~(1/k)],且-(K~(1/k))/2<(K~(1/k))/2,但f(-(K~(1/k))/2)相似文献   

10.
钾离子(K~+)是细胞内含量最丰富的金属离子。对人类而言,K~+浓度异常可能是几种疾病的预兆,包括肾病、心脏病、糖尿病、艾滋病和癌症等。面对体内复杂的生理环境,如何高灵敏性和高选择性地实时监测K~+浓度变化仍是一个世界难题。K~+与鸟嘌呤-四链体(G-quartet)有非常强的亲和力,富含鸟嘌呤的DNA或适配体,在K~+存在下会由单链无规卷曲构型向G-quartet折叠构型转变,基于此原理使用不同检测方法设计了许多K~+传感器,包括荧光分析法、比色分析法、化学发光(CL)分析法,电化学分析法和电化学发光(ECL)分析法。在这篇综述中,我们将全面介绍和讨论基于G-quartet设计传感K~+的方法。  相似文献   

11.
物体的平衡是指物体在力的作用下,处于静止状态,匀速直线运动状态或匀速转动.有两基本的种类型:一是在共点力作用下物体处于平衡状态,其平衡的条件是合力等于零即sum from F=0或sum from F_x=0,sum from F_y=0.二是有固定转动轴时物体绕固定转轴匀速转动处于平衡,其平衡条件是合力矩等干零即sum from M=0或sum from M_顺=sum from M_逆.正确的受力分析,灵活地应用物理模型,采用适当的方法才能迅速解决物体平衡问题.  相似文献   

12.
大家熟知sum form i=1 to ni=1/2 n(n+1) (*) 但sum form n_1=1 to n sum form i=1 to n_1i=?更一般地sum form n_(m-1)=1 to n sum form n_(m-z)=1 to n_(m-1)…sum form n_1=1 to n_2 sum form i=1 to n_1i=? sum form n_(m-1)=1 to n sum form n_(m-z)=1 to n_(m-1)  相似文献   

13.
含参数的柯西不等式: (sum from i=1 to n(a_ib_i))~2=[(sum from i=1 to n(λ_ia_i)·(b_i/λ_i)]~2≤(sum from i=1 to n(λ_i~2a_i~2)(sum from i=1 to n(b_i~2/λ_i~2),其中λ_i>0 (i=1、2、…、n)。  相似文献   

14.
本文将切比雷夫不等式:“a_1≥a_2≥…≥a_n,b_1≥b_2≥…≥b_n(?)(sum from i=1 to n a~i)(sum from j=1 to n b_j)≤n sum from i,j to n a_ib_j”作如下的推广:如果{a_i}_(i=1)~n与{b_j}_(i=1)~n同时为单调增加或单调减少实数列,那么对于任何实数列{c_i}_(i=1)~n有(sum from i=1 to n a_ib_ic_i)(sum from i=1 to n c_i)(?)(sum from i=1 to n a_ic_i)(sum from j=1 to n b_jc_j) ……(Ⅰ) 如果{a_i}_(i=1)~n与{b_j}_(j=1)~n中有一个单调增加而另一个单调减少,那么对于任何非负实实数列{c_i}_(i=1)~n有(sum from i=1 to n a_ib_(ii))(sum from i=1 to n c_i)≤(sum from i=1 to n a_ic_i)(sum from j=1 to n b_jc_j)……(Ⅱ) 如果{c_i}_(i=1)~n为正的实数列,那么不等式(Ⅰ)、(Ⅱ)中的等号成立当且仅当{a_i}_(i=1)~n或{b_j}_(j=1)~n 中有一个是常数列。如果取c_i=1(i=1,2,…,n,那么就得原来的不等式。推广后的切比雷夫不等式的证明:在第一种情形下,sum from i=1 to n sum from j=1 to n (a~i-a_j)(b_i-b_j)c_ic_j  相似文献   

15.
第二十九届国际数学奥林匹克竞赛有一道非常难的预选题: 命题 设a_i>0,β_i>0(1≤n,n>1),且sum from i=1 to n a_i=sum from i=1 to n β_i=π. 证明:sum from i=1 to n cosβ_i/sina_i≤sum from i=1 to n ctga_i (1) (蒙古提供)  相似文献   

16.
由初等代数学,我们知道下面恒等式是成立的:(sum from n to i=1 a_i~2)(sum from n to i=1 b_i~2)-(sum from n to i=1 a_ib_i)=sum from to (i,f)(a_ib_f-a_fb_i)~Z……(1)此恒等式,通常称为拉格朗日(Lagrange)恒等式。由初等代数学也容易证明下面不等式是成立的:  相似文献   

17.
在柯西不等式:(sum from i=1 to n a_i~2)·(sum from i=1 to n b_i~2)≥(sum from i=1 to n a_ib_i)~2(其中a_i,b_i∈R,i=1,2,…,n)  相似文献   

18.
设n是正整数,bk(n)表示n的k次根部分.利用初等和解析方法研究了级数sum from ∞ to n=1 1/(a3s(n))(n)和sum from ∞ to n=1 1/(bks(n))的收敛性以及sum from to n=≤x a3k(n)和sum from to n=≤x bkt(n)的均值性质,并给出渐近公式.  相似文献   

19.
本文给出第2类Stirling数,Bernoulli数与Euler数的解析表示式: s_2(m+1,n)=(-1)~n/n1 sum form j=1 to n(-1)~j(?)_j~(-m+1) B_n=sum form k=1 to n 1/(k+1) sum form j=1 to k (-1)~j(?)_j~(-n) E_(2n) =1/(2n+1)[sum from p=0 to n-1 sum from k=1 to 2(n-p) sum from j=1 to k (-1)~(j-1)/(k+1)·(?)(?)(4j)~2(n-p)+4n+1]因此解决了它们的计算问题。  相似文献   

20.
In this paper,we first establish the dual Brunn-Minkowski inequality for the star duals for the Lp radial sum.Furthermore,we give some Brunn-Minkowski inequalities for the star duals of intersection bodies for the Lp radial sum and the Lp harmonic Blaschke sum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号