首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、函数单调性的定义1.给定区间D上的任意x1、x2,如果x1f(x2),则函数f(x)为这个区间D上的递减函数.二、函数单调性的理解  相似文献   

2.
笔者最近对递推函数的周期作了些探究,得到了一组十分优美的结论,且在国内外数学竞赛中有着广泛的用途,在此给出来与读者共赏.结论1若函数f(x)(x∈R)满足f(x m)=11-f(x),则函数f(x)是周期为3m的周期函数.证明因为f(x m)=1-1f(x),①用x m代替①式中的x,则有f(x 2m)=1-f(1x m).②①式代入②式化简,得f(x 2m)=f(fx()x)-1.③用x m代替③式中的x,则有f(x 3m)=f(fx( x mm))-1.④①式代入④式化简,得f(x 3m)=f(x).所以函数f(x)是周期为3m的周期函数.结论2若函数f(x)(x∈R)满足f(x m)=1 f(x)1-f(x),则函数f(x)是周期为4m的周期函数.证明因为f(x m)=…  相似文献   

3.
用已知函数f(x)的第^n-1次迭代fn(x)的定义,证明了严格递增函数的不动点与其迭代函数的不动点相同,于对严格递减函数,当f1(x)=f(x)与f2(x)f|f1(x)|的不动点相同时,x0是f(x)的不动点的充要条件是x0是fn(x)的不动点。  相似文献   

4.
1问题呈现问题1(2020全国Ⅱ卷文21)已知函数f(x)=2 ln x+1.(1)若f(x)≤2x+c,求c的取值范围;(2)设a>0,讨论函数g(x)=f(x)-f(a)x-a的单调性.问题2(2020天津卷20)已知函数f(x)=x 3+k ln x(k∈R),f′(x)为f(x)的导函数.(1)当k=6时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数g(x)=f(x)-f′(x)+9 x的单调区间和极值.  相似文献   

5.
我们将没有明确给出解析式的函数称为抽象函数,本文就如何确定抽象函数的周期性通过实例介绍一些技巧,供学习参考。 1 合理赋值 在确定抽象函数的周期时,如果题设条件中含有f(a)=b(a、b为常数)等类似条件时,合理赋以特殊值,常可使问题迎刃而解。 例1: 设函数f(x)是定义在R上的奇函数,且f(1)=0,并对任何x∈R均有f(x+2)-f(x)=f(2),则f(x)是以2为周期的周期函数。 分析:因为f(x)是R上的奇函数,所以对一切x∈R都有:f(-x)=-f(x) 又f(x+2)-f(x)=f(2)。 令x=-1,得f(1)-f(-1)=f(2), 即f(1)+f(1)=f(2), 从而f(2)=2f(1)=0 所以f(x+2)=f(x)+f(2)=f(…  相似文献   

6.
在高中数学教学中 ,对函数的图象及性质的学习占有相当的比例 ,特别是对一些典型函数的研究可以培养思维能力 ,提高思维品质 .本文简要介绍函数 f(x) =ax +bx(a>0 ,b>0 )的性质 (单调性、值域和图象 )及应用 .一、函数 f(x)的性质1 单调性函数 f(x) =ax+bx(a>0 ,b>0 )的定义域为 ( -∞ ,0 )∪ ( 0 ,+∞ ) .由于 f( -x) =-f(x) ,所以函数 f(x)是奇函数 .先讨论 f(x)在 ( 0 ,+∞ )上的单调性 .设 0 相似文献   

7.
高考试题:已知函数f(x)=x2+2/x+alnx(x>0),f(x)的导函数是f’(x),对任意两个不相等的正数x1﹑x2,证明: (Ⅰ)当a≤0时,[f(x1)+f(x2)]/2>f[(x1+x2)/2];(Ⅱ)当a≤4时,|f’(x1)-f’(x2)|>|x1-x2|.该题可以运用不等式和导数的有关知识给出证明.在这里提出这样的问题:能否对题目中给出的a的条件作出进一步的加强,使得(Ⅰ)﹑(Ⅱ)仍然成立呢?为了探讨这个问题,首先给出一个定义和一个定理:定义(函数凸凹性):已知函数f(x)在区间(a,b)有定义,  相似文献   

8.
函数的奇偶性是研究函数性质的一个重要方面.在判断函数的奇偶性时,不少同学顾此失彼.下面就典型错误及原因加以剖析,供参考.一、勿忘定义域例1判断函数f(x)=|x 12-|x-22的奇偶性.错解∵f(-x)=|-1x- (2-|x-)22=|-x1 -2x|2-2;∴f(-x)≠f(x),且f(-x)≠-f(x),所以函数f(x)=|x 12-|  相似文献   

9.
1 可导函数f(x)与其导函数f′(x)的对称性的有关结论 定理 设x0为函数f(x)定义域内的一点,n=f(x0)+f(2m-x0)2,则 (1)函数f(x)关于直线x=m对称的充要条件是f′(x)关于点(m,0)成中心对称;  相似文献   

10.
Ⅰ.正比例函数f(x)=kx(k≠0,x∈R)的抽象函数的特征式为:(1)f(x+y)=f(x)+f(y);(2)f(x-y)=f(x)-f(y);(3)f(xy)=k1f(x)f(y),特别地当k=1时,有f(xy)=f(x)f(y).例1:定义在R上的函数f(x),恒有f(x+y)=f(x)+f(y),若f(16)=4,那么f(2003)=.解法1(基本解法):令x=y=0,得f(0)=2f(0),∴f(0)=0.令y=-x,得f(x-x)=f(x)+f(-x),即f(-x)=-f(x),∴f(x)是奇函数.令y=x,得f(2x)=2f(x),f(22x)=f(2·2x)=2f(2x)=22f(x),…,f(2nx)=2nf(x).又∵f(16)=4,∴f(1)=41.∵f(2003)=f(211-25-23-22-1),∴f(2003)=f(211)-f(25)-f(23)-f(22)-f(1)=(211-25-23-22-1)·f(1)=20403.…  相似文献   

11.
付怀军 《考试周刊》2013,(72):43-43
<正>考查复合函数f=f(g(x))的单调性.设单调函数y=f(x)为外层函数,y=g(x)为内层函数,(1)若y=f(x)增,y=g(x)增,则y=f(g(x))增.(2)若y=f(x)增,y=g(x)减,则y=f(g(x))减.(3)若y=f(x)减,y=g(x)减,则y=f(g(x))增.(4)若y=f(x)减,y=g(x)增,则y=f(g(x))减.结论:同增异减.  相似文献   

12.
函数解析式是研究函数性质的基础 ,求函数的解析式是函数问题中较难掌握的一类问题 ,下面结合实例谈谈求函数解析式的 1 0种常用方法 .1 配凑法已知f[g(x) ]的解析式 ,求f(x)的解析式 ,常用配凑法 .例 1 已知f(x 1x) =x2 1x2 -x -1x 1 ,求f(x) .解 因为f(x 1x) =(x 1x) 2 - (x 1x) - 1 ,所以f(x) =x2 -x - 1 .评注 配凑法的关键就是通过观察 ,把f[g(x) ]的解析式凑成关于g(x)的形式 .2 换元法已知f[g(x) ]=h(x) ,且g(x)存在反函数 ,求f(x)的解析式 ,常用换元法 .例 2 已知f(x 1x ) =x2 1x2 1x,求f(x) .解 设x 1x =t,则x =1t…  相似文献   

13.
近年来 ,经常在高考、高考模拟以及竞赛中出现与抽象函数有关的试题 .一般地 ,抽象函数是指没有给出具体的函数解析式 ,只是给出函数所具有的某些性质的函数 .这类试题往往概念抽象、隐蔽性强、灵活性大、综合程度高 ,因此 ,学生常常感到难以掌握 .本文主要介绍求解抽象函数问题的常见方法 ,供参考 .一、合理递推例 1 已知函数f(x)具有性质 f(x)+f(x -1) =x2 ,如果f( 19) =94,那么f( 94)除以 10 0 0的余数是多少 ?解 由 f(x) +f(x -1) =x2 ,得f(x) =x2 -f(x-1) .又 f( 19) =94,∴f( 2 0 ) =2 0 2 -f( 19) , f( 2 1) =2 12 -f( 2 0 )=2 12…  相似文献   

14.
错在哪里     
甘志国 《中学数学教学》2014,(5):F0003-F0004
<正>题目已知函数f(x)的定义域为D,若对于任意的x1,x2∈D,当x1相似文献   

15.
<正>题目若函数f(x)满足下列两个性质:①f(x)在其定义域上是单调函数;②在f(x)的定义域内存在某个区间使f(x)在[a,b]上的值域是[1/2a,1/2b],则我们称f(x)为"内含函数".(1)判断函数f(x)=x1/2是否为"内含函数"?若是,求出a、b,若不是,说明理由;  相似文献   

16.
张春林 《高中生》2013,(27):24-25
一、几种常见的抽象函数1.一次函数型抽象函数:f(x+y)=f(x)+f(y),f(x-y)=f(x)-f(y).对应函数模型:f(x)=kx(k≠0).2.二次函数型抽象函数:f(a+x)=f(a-x).对应函数模型:f(x)=k(x-a)2+m(k≠0).3.指数函数型抽象函数  相似文献   

17.
若函数在定义域的不同子集上的对应法则不同 ,可用几个式子来表示函数 ,这种形式的函数叫分段函数。已知一个分段函数在某一区间上的解析式 ,求此函数在另一区间上的解析式 ,这是分段函数中最常见的问题。由于给出条件的不同 ,常有如下一些题型。1 分段函数关于直线对称的情形例 1 设函数 y =f(x)的图像关于直线x =1对称 ,若x≤ 1时 ,y =x2 +1。求x >1时 f(x)的解析式。解 设x >1 ,则 2 -x <1 ,由已知条件 ,得f( 2 -x) =( 2 -x) 2 +1 =x2 -4x +5。因为函数y =f(x)关于x =1对称 ,故 f(x) =f( 1 -(x -1 ) ) ,即 f(x) =f( 2 -x) ,所以当x >1…  相似文献   

18.
三次函数图象的对称性是高考的热点问题,任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”(-b/3a,f(-b/3a)),且“拐点”就是对称中心;对称中心在导函数y=f′(x)的对称轴上;若三次函数y=f(x)的两个极值点为x1,x2,设P(x1,f(x1)),Q(x2,f(x2)),则三次函数f(x)的对称中心是线段PQ的中点;通过引申更得出具有对称中心的单调函数的重要性质.这些性质在高考中广泛的应用.  相似文献   

19.
柳高稳 《甘肃教育》2020,(4):187-187
一、函数凹凸性的概念及基本性质探讨。定义设f为定义在区间I上的函数,若对任意两点x1,x2和实数0<λ<1,总有f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2),则称f为I上的凸函数;反之,如果总有不等式f[λx1+(1-λ)x2]≥λf(x1)+(1-λ)f(x2),则称f为I上的凹函数。  相似文献   

20.
抽象函数是相对于具体函数而言的,指没有给出具体函数的解析式,仅仅依据给定的性质来解决相关问题的一类函数,在多次考试中,常出现以抽象函数为背景的考题,因此我们在学习中应引起重视。一、抽象函数的定义域求函数的定义域是求单个变量x的取值集合。例1:①已知f(x)的定义域为[0,1],求f(x 1)的定义域。解:∵0≤x 1≤1∴-1≤x≤0即f(x 1)的定义域为[-1,0]。②已知f(x2)的定义域为[-1,2],求f(x)的定义域。解:∵-1≤x≤2∴0≤x2≤4,即f(x)的定义域为[0,4]。一般地,若f(x)的定义域为D,则f[g(x)]的定义域是{x?g(x)∈D},即求g(x)的值域为D时,对…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号