首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to explore whether a representational approach could impact on the scores that measure students’ understanding of mechanics and their ability to reason. The sample consisted of 24 students who were undergraduate, preservice physics teachers in the State University of Malang, Indonesia. The students were asked to represent a claim, provide evidence for it, and then, after further representational manipulations, refinement, discussion, and critical thought, to reflect on and confirm or modify their original case. Data analysis was based on the pretest–posttest scores and students’ responses to relevant phenomena during the course. The results showed that students’ reasoning ability significantly improved with a d-effect size of 2.58 for the technical aspects and 2.51 for the conceptual validity aspects, with the average normalized gain being 0.62 (upper–medium) for the two aspects. Students’ conceptual understanding of mechanics significantly improved with a d-effect size of about 2.50 and an average normalized gain of 0.63. Students’ competence in mechanics shifted significantly from an under competent level to mastery level. This paper addresses statistically previously untested issues in learning mechanics through a representational approach and does this in a culture that is quite different from what has been researched so far using student-generated representational learning as a reasoning tool for understanding and reasoning.  相似文献   

2.
3.
The purpose of this study is to assess students’ conceptual learning of electricity and magnetism and examine how these conceptions, beliefs about physics, and quantitative problem-solving skills would change after peer instruction (PI). The Conceptual Survey of Electricity and Magnetism (CSEM), Colorado Learning Attitudes about Science Survey (CLASS), multiple-choice test was administered as a pre- and posttest with Solomon 4 group design to students (N  =  138) enrolled on freshman level physics course. The number of chapter taught to the students was 14. Problem-solving strategy steps were asked to students in the exam. The analyses of CSEM showed that the treatment group (g  =  0.62) obtained significantly higher conceptual learning gain than the control group (g  =  0.36). The conceptual understanding and problem-solving skills of the students on magnetism considerably enhanced when PI was conducted (37% and 20%, respectively). CLASS results for 5 subscales (conceptual understanding, applied conceptual understanding, problem solving general, problem solving confidence, and problem solving sophistication) supported the findings of CSEM.  相似文献   

4.
Many middle school students like to ask how they can learn English well. This is really a difficult question to answer, Some teachers may frankly tell their students:Memorize new words and phrases, spend much time in reading and soon you will have a good command of English. As a matter of fact,the case is not like this. The English language has a large vocabulary of more than 400,000 words not including phrases. How can a student's brain take in so many words just like a computer? On the other hand, if the student lays too much emphasis on written English (and only learns it well),what will he do when he wants to express himself orally without any communicative competence?The teachers neglect the importance of the other three skills,which are listening,speaking and writing,  相似文献   

5.

In two dimensions (2D), representations associated with slopes are seen in numerous forms before representations associated with derivatives are presented. These include the slope between two points and the constant slope of a linear function of a single variable. In almost all multivariable calculus textbooks, however, the first discussion of slopes in three dimensions (3D) is seen with the introduction of partial derivatives. The nature of the discussions indicates that authors seem to assume that students are able to naturally extend the concept of a 2D slope to 3D and correspondingly it is not necessary to explicitly present slopes in 3D. This article presents results comparing students that do not explicitly discuss slopes in 3D with students that explicitly discuss slopes in 3D as a precursor to discussing derivatives in 3D. The results indicate that students may, in fact, have significant difficulty extending the concept of a 2D slope to a 3D slope. And that the explicit presentation of slopes in 3D as a precursor to the presentation of derivatives in 3D may significantly improve student comprehension of topics of differentiation in multivariable calculus.

  相似文献   

6.
In two dimensions (2D), representations associated with slopes are seen in numerous forms before representations associated with derivatives are presented. These include the slope between two points and the constant slope of a linear function of a single variable. In almost all multivariable calculus textbooks, however, the first discussion of slopes in three dimensions (3D) is seen with the introduction of partial derivatives. The nature of the discussions indicates that authors seem to assume that students are able to naturally extend the concept of a 2D slope to 3D and correspondingly it is not necessary to explicitly present slopes in 3D. This article presents results comparing students that do not explicitly discuss slopes in 3D with students that explicitly discuss slopes in 3D as a precursor to discussing derivatives in 3D. The results indicate that students may, in fact, have significant difficulty extending the concept of a 2D slope to a 3D slope. And that the explicit presentation of slopes in 3D as a precursor to the presentation of derivatives in 3D may significantly improve student comprehension of topics of differentiation in multivariable calculus.  相似文献   

7.
This study compares the effects of two methods of teaching—teacher-centered and cooperative learning—on students’ science achievement and use of social skills. The sample consists of 163 female elementary science students in 8 intact grade 5 classes who were assigned to 2 instructional methods and were taught an identical science unit by 4 classroom teachers. The students’ science achievement was measured by a researcher-designed achievement test given to students as a pretest and a posttest. Students’ social skills were determined by a researcher-designed survey administered as a pretest and posttest. Analysis of the achievement test scores and the social skills survey responses revealed that cooperative learning strategies have significantly (p > 0.05) more positive effects on both students’ achievement and social skills than teacher-centered strategies. These results provide an evidential base to inform policy decisions and encourage and persuade teachers to implement cooperative learning methods in Kuwaiti classrooms.  相似文献   

8.
9.
Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are approached in different ways at the various stages of a typical engineering syllabus: at the beginning, they are mostly dealt with a static point of view, for example in mechanics, and are subsequently handled through dynamic analysis in control courses. In general, there is a little clarification of the differences between these concepts or the ways in which they are linked. We believe that this leads to much confusion and incomprehension among engineering students. Several studies have shown that students encounter difficulties when presented with simple familiar or academic static equilibrium cases in mechanics. Our study investigates students’ conceptions and misconceptions about equilibrium and stability through a series of questions about several innovative non-static situations. It reveals that the understanding of these notions is shaken when the systems being studied are placed in inertial or non-inertial moving reference frames. The students in our study were particularly uncertain about the existence of unstable equilibrium positions and had difficulty in differentiating between the two concepts. The results suggest that students use a velocity-based approach to explain such situations. A poor grasp of the above fundamental concepts may result from previous learning experiences. More specifically, certain difficulties seem to be directly linked to a lack of understanding of these concepts, while others are related to misconceptions arising from everyday experiences and the inappropriate use of physical examples in primary school.  相似文献   

10.
11.
The purpose of this study was to explore the impact of argumentation-based pedagogy on college students?? conceptual understanding of properties and behaviors of gases. The sample consists of 108 students (52 in the control group and 56 in the intervention group) drawn from 2 general chemistry college courses taught by the same instructor. Data were collected through pre- and post-tests. The results of the study show that the intervention group students performed significantly better than the control group students on the post-test. The intervention group students also showed significant increase in their test scores between pre- and post-test. While at least 80?% of the students in the intervention group abandoned their initial ideas on all of the 17 alternative conceptions that were identified by the authors but one, the percent of student abandoning their initial ideas in the control group was less than 50. The discussion focuses on the implications of these results for addressing students?? alternative conceptions, promoting the argumentation?Cpedagogy in college science courses and the challenges associated with the use of argumentation in college science classrooms.  相似文献   

12.
This study diagnosed the understanding about energy and biological-context energy concepts held by 90 first-year South African university biology students. In particular, students’ explanations of energy in a biological context, how energy is involved in different biological situations and whether energy is present and what types of energy are involved in diagrams depicting biological phenomena were investigated. The pencil-and-paper diagnostic test, specifically designed for this study, was used to elicit students’ understanding using test items involving biological phenomena. The results showed that many students had problems in understanding energy and energy-related concepts in the following areas: First, the majority of the students provided definitions of energy rather than the explanations they were asked to provide, and the definition could have been rote-learned. Second, although nearly all students knew the energy conservation principle (energy cannot be created or destroyed), many of them were unable to apply this concept to biological contexts. Third, many students erroneously claimed that the energy for metabolism and life processes is made available during photosynthesis in plants, during digestion in animals or that this energy comes directly from the sun. Fourth, about two thirds of the students erroneously indicated that there is no energy involved/present in inanimate objects such as a statue. The implications for the teaching and learning of energy and its related concepts and recommendations for further research are discussed.  相似文献   

13.
14.
The impact of a professional development experience involving scientists and fourth to eighth grade teachers of science was explored. Teachers attended a summer program at a research facility where they had various experiences such as job shadowing and interviewing scientists. They also participated in authentic inquiry investigations and planned inquiry units for their classrooms. Data on teachers’ understanding and implementation of inquiry were collected through surveys, questionnaires, and classroom observations. Findings show that the teachers’ understanding of inquiry improved and most participants were able to successfully implement inquiry science in their classrooms. Barriers to the implementation of inquiry practices and the impact of specific experiences with the scientists were explored.  相似文献   

15.
As the knowledge base in all disciplines continues to grow, professors face the problem of incorporating even more essential, difficult, technical material into their already content‐filled courses. Furthermore, companies are hiring more selectively than ever, requiring not only superior technical skills but also good writing skills of the people they hire. How can faculty add more technical material plus extra writing practice into already bulging courses?

One solution may be to supplement typical homework problems with daily written journals. In using these journals, the students would think about and better understand difficult concepts that are not being fully understood through homework problems. Also, a byproduct of writing in daily journals would be extra writing practice and, presumably, better writing skills.

The purpose of this paper is to describe the results of research done in the Collin County Community College District in which four Principles of Accounting classes were used in an experiment involving writing to learn. Two classes were conducted in the traditional accounting class format in which student participation was through homework problems. The other two classes also wrote in daily journals, using a few minutes of class time to individually summarize difficult concepts presented during that class. Final grades and attrition rates of the experimental groups were compared at the end of the semester with promising results.  相似文献   

16.
Thermal physics is in the realm of everyday experience, underlies current environmental concerns, and underpins studies in sciences, health and engineering. In the state of NSW in Australia, the coverage of thermal topics in high school is minimal, and, hence, so is the conceptual understanding of students. This study takes a new approach at exploring conceptions of students with a qualitative analysis facilitated by NVivo complemented with reference to sociocultural ideas of learning. A 2-part pen and paper question was given to 598 first year university students of different educational backgrounds (and therefore physics expertise). ‘The Question’ was based on 2 familiar scenarios and required the selection of a concept first, followed by an explanation. The results showed that concepts were favoured based on a student’s everyday experience and their curriculum through high school, and some were more effective than others in making scientifically congruent responses. The reported thermal physics alternative conceptions were also examined in our sample, and students’ reasoning behind such conceptions indicate that some conceptions do not inhibit scientifically congruent responses whilst others do. The results implicate language and the everyday experiences of the student in the teaching and learning of thermal physics.  相似文献   

17.
18.
19.
20.
In this study, we investigate the meaning students attribute to the structure of mathematical induction (MI) and the process of proof construction using mathematical induction in the context of a geometric recursion problem. Two hundred and thirteen 17-year-old students of an upper secondary school in Greece participated in the study. Students’ responses in 3 written tasks and the interviews with 18 of them are analyzed. Though MI is treated operationally in school, the students, when challenged, started to recognize the structural characteristics of MI. In the case of proof construction, we identified 2 types of transition from argumentation to proof, interwoven in the structure of the geometrical pattern. In the first type, MI was applied to the algebraic statement that derived from the direct translation of the geometrical situation. In the second type, MI was embedded functionally in the geometrical structure of the pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号