首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conventional noncentrality parameter estimator of covariance structure models, which is currently implemented in widely circulated structural modeling programs (e.g., LISREL, EQS, AMOS, RAMONA), is shown to possess asymptotically potentially large bias, variance, and mean squared error (MSE). A formal expression for its large-sample bias is presented, and its large-sample variance and MSE are quantified. Based on these results, it is suggested that future research needs to develop means of possibly unbiased estimation of the noncentrality parameter, with smaller variance and MSE.  相似文献   

2.
Bootstrapping approximate fit indexes in structural equation modeling (SEM) is of great importance because most fit indexes do not have tractable analytic distributions. Model-based bootstrap, which has been proposed to obtain the distribution of the model chi-square statistic under the null hypothesis (Bollen & Stine, 1992), is not theoretically appropriate for obtaining confidence intervals (CIs) for fit indexes because it assumes the null is exactly true. On the other hand, naive bootstrap is not expected to work well for those fit indexes that are based on the chi-square statistic, such as the root mean square error of approximation (RMSEA) and the comparative fit index (CFI), because sample noncentrality is a biased estimate of the population noncentrality. In this article we argue that a recently proposed bootstrap approach due to Yuan, Hayashi, and Yanagihara (YHY; 2007) is ideal for bootstrapping fit indexes that are based on the chi-square. This method transforms the data so that the “parent” population has the population noncentrality parameter equal to the estimated noncentrality in the original sample. We conducted a simulation study to evaluate the performance of the YHY bootstrap and the naive bootstrap for 4 indexes: RMSEA, CFI, goodness-of-fit index (GFI), and standardized root mean square residual (SRMR). We found that for RMSEA and CFI, the CIs under the YHY bootstrap had relatively good coverage rates for all conditions, whereas the CIs under the naive bootstrap had very low coverage rates when the fitted model had large degrees of freedom. However, for GFI and SRMR, the CIs under both bootstrap methods had poor coverage rates in most conditions.  相似文献   

3.
This Monte Carlo simulation study investigated the impact of nonnormality on estimating and testing mediated effects with the parallel process latent growth model and 3 popular methods for testing the mediated effect (i.e., Sobel’s test, the asymmetric confidence limits, and the bias-corrected bootstrap). It was found that nonnormality had little effect on the estimates of the mediated effect, standard errors, empirical Type I error, and power rates in most conditions. In terms of empirical Type I error and power rates, the bias-corrected bootstrap performed best. Sobel’s test produced very conservative Type I error rates when the estimated mediated effect and standard error had a relationship, but when the relationship was weak or did not exist, the Type I error was closer to the nominal .05 value.  相似文献   

4.
This study used Monte Carlo methods to investigate the accuracy and utility of estimators of overall error and error due to approximation in structural equation models. The effects of sample size, indicator reliabilities, and degree of misspecification were examined. The rescaled noncentrality parameter (McDonald & Marsh, 1990) was examined as a measure of approximation error, whereas the one‐ and two‐sample cross‐validation indices and a sample estimator of overall error (EFo) proposed by Browne and Cudeck (1989, 1993) were presented as measures of overall error. The rescaled noncentrality parameter and EFo provided extremely accurate estimates of the amounts of approximation and overall error, respectively. However, although models with errors of omission produced larger estimates of approximation and overall error, the presence of errors of inclusion had little or no effect on estimates of either type of error. The cross‐validation indices and sample estimator of overall error reached minimum values for the same model as an empirically derived measure of overall error only for models with large amounts of specification error. Implications for the use of these estimators in choosing among competing models were discussed.  相似文献   

5.
This article considers the implications for other noncentrality parameter-based statistics from Steiger's (1998) multiple sample adjustment to the root mean square error of approximation (RMSEA) measure. When a structural equation model is fitted simultaneously in more than 1 sample, it is shown that the calculation of the noncentrality parameter used in tests of approximate fit and in point and interval estimators of other noncentral fit statistics (except the expected cross-validation index) also requires a likeminded adjustment. Furthermore, it is shown that an adjustment is needed in multiple sample models for correctly calculating MacCallum, Browne, and Sugawara's (1996) approach to power analysis. The accuracy of these proposals is investigated and demonstrated in a small Monte Carlo study in which particular attention is paid to using appropriately constructed covariance matrices that give specified nonzero population discrepancy values under maximum likelihood estimation.  相似文献   

6.
Conventionally, moderated mediation analysis is conducted through adding relevant interaction terms into a mediation model of interest. In this study, we illustrate how to conduct moderated mediation analysis by directly modeling the relation between the indirect effect components including a and b and the moderators, to permit easier specification and interpretation of moderated mediation. With this idea, we introduce a general moderated mediation model that can be used to model many different moderated mediation scenarios including the scenarios described in Preacher, Rucker, and Hayes (2007). Then we discuss how to estimate and test the conditional indirect effects and to test whether a mediation effect is moderated using Bayesian approaches. How to implement the estimation in both BUGS and Mplus is also discussed. Performance of Bayesian methods is evaluated and compared to that of frequentist methods including maximum likelihood (ML) with 1st-order and 2nd-order delta method standard errors and mL with bootstrap (percentile or bias-corrected confidence intervals) via a simulation study. The results show that Bayesian methods with diffuse (vague) priors implemented in both BUGS and Mplus yielded unbiased estimates, higher power than the ML methods with delta method standard errors, and the ML method with bootstrap percentile confidence intervals, and comparable power to the ML method with bootstrap bias-corrected confidence intervals. We also illustrate the application of these methods with the real data example used in Preacher et al. (2007). Advantages and limitations of applying Bayesian methods to moderated mediation analysis are also discussed.  相似文献   

7.
文中探讨了模拟偏差对自助法均值估计的影响.首先,从分布N(1,12)中产生样本数据,利用自助法,得到自助法均值的估计.然后讨论了样本数据均值和总体分布均值的偏差对自助法估计的影响.结果表明,当偏差的绝对值小于等于0.54时,模拟结果较好,当偏差的绝对值大于等于0.56时,模拟结果很差.  相似文献   

8.
The noncentrality parameter for a contrast test in a one-way analysis of variance is based on the dot product of 2 vectors whose geometric meaning in a Euclidian space offers mnemonic hints about its constituents. Additionally, the noncentrality parameters for a set of orthogonal contrasts sum up to the noncentrality parameter for the omnibus F test. The author provides an example of Helmert contrasts to demonstrate the use of the noncentrality parameters in contrast tests.  相似文献   

9.
Although much is known about the performance of recent methods for inference and interval estimation for indirect or mediated effects with observed variables, little is known about their performance in latent variable models. This article presents an extensive Monte Carlo study of 11 different leading or popular methods adapted to structural equation models with latent variables. Manipulated variables included sample size, number of indicators per latent variable, internal consistency per set of indicators, and 16 different path combinations between latent variables. Results indicate that some popular or previously recommended methods, such as the bias-corrected bootstrap and asymptotic standard errors had poorly calibrated Type I error and coverage rates in some conditions. Likelihood-based confidence intervals, the distribution of the product method, and the percentile bootstrap emerged as leading methods for both interval estimation and inference, whereas joint significance tests and the partial posterior method performed well for inference.  相似文献   

10.
This paper evaluates the impact of teaching innovations, introduced in public primary schools under the Children Resources International (CRI) Program, on student outcomes. We estimate students’ learning based on their scores on standardized tests. We match schools and children within the treatment and comparison group and find that the CRI Program has been effective in raising learning achievement. Moreover, the results are robust to unobserved selection bias. The average gain for a CRI student represents an improvement of 0.40 standard deviations. The results stay unchanged when we use alternative estimators for the treatment effect including the bias-corrected estimator proposed by Abadie and Imbens (2006).  相似文献   

11.
Though the common default maximum likelihood estimator used in structural equation modeling is predicated on the assumption of multivariate normality, applied researchers often find themselves with data clearly violating this assumption and without sufficient sample size to utilize distribution-free estimation methods. Fortunately, promising alternatives are being integrated into popular software packages. Bootstrap resampling, which is offered in AMOS (Arbuckle, 1997), is one potential solution for estimating model test statistic p values and parameter standard errors under nonnormal data conditions. This study is an evaluation of the bootstrap method under varied conditions of nonnormality, sample size, model specification, and number of bootstrap samples drawn from the resampling space. Accuracy of the test statistic p values is evaluated in terms of model rejection rates, whereas accuracy of bootstrap standard error estimates takes the form of bias and variability of the standard error estimates themselves.  相似文献   

12.
Discriminant Analysis (DA) is a tool commonly used for differentiating among 2 or more groups based on 2 or more predictor variables. DA works by finding 1 or more linear combinations of the predictors that yield maximal difference among the groups. One common goal of researchers using DA is to characterize the nature of group difference by interpreting the contributions of the individual predictors to this linear combination, often using structure coefficients (SC). The authors of this simulation study examine the utility of several methods for interpreting SCs. Results indicate that with samples greater than 100, a bootstrap confidence interval may be optimal, whereas with smaller samples, common rules of thumb may work best. Furthermore, nonnormal data and unequal covariance matrixes diminish the effectiveness of SCs as an interpretive tool.  相似文献   

13.
The relation among fit indexes, power, and sample size in structural equation modeling is examined. The noncentrality parameter is required to compute power. The 2 existing methods of computing power have estimated the noncentrality parameter by specifying an alternative hypothesis or alternative fit. These methods cannot be implemented easily and reliably. In this study, 4 fit indexes (RMSEA, CFI, McDonald's Fit Index, and Steiger's gamma) were used to compute the noncentrality parameter and sample size to achieve certain level of power. The resulting power and sample size varied as a function of (a) choice of fit index, (b) number of variables/degrees of freedom, (c) relation among the variables, and (d) value of the fit index. However, if the level of misspecification were held constant, then the resulting power and sample size would be identical.  相似文献   

14.
Bayesian methods have the potential for increasing power in mediation analysis (Koopman, Howe, Hollenbeck, & Sin, 2015; Yuan & MacKinnon, 2009). This article compares the power of Bayesian credibility intervals for the mediated effect to the power of normal theory, distribution of the product, percentile, and bias-corrected bootstrap confidence intervals at N ≤ 200. Bayesian methods with diffuse priors have power comparable to the distribution of the product and bootstrap methods, and Bayesian methods with informative priors had the most power. Varying degrees of precision of prior distributions were also examined. Increased precision led to greater power only when N ≥ 100 and the effects were small, N < 60 and the effects were large, and N < 200 and the effects were medium. An empirical example from psychology illustrated a Bayesian analysis of the single mediator model from prior selection to interpreting results.  相似文献   

15.
Approximations to the distributions of goodness-of-fit indexes in structural equation modeling are derived with the assumption of multivariate normality and slight misspecification of models. The fit indexes considered in this article are Joreskog and Sorbom's goodness-of-fit index (GFI) and the adjusted GFI, McDonald's absolute GFI, Steiger and Lind's root mean squared error of approximation, Steiger's Γ1 and Γ2, Bentler and Bonett's normed fit index, Bollen's incremental fit index and ρ1, Tucker and Lewis's index ρ2, and Bentler's fit index (McDonald and Marsh's relative noncentrality index). An approximation to the asymptotic covariance matrix for the fit indexes is derived by using the delta method. Furthermore, approximations to the densities of the fit indexes are obtained from the transformations of the asymptotically noncentral chi-square distributed variable. A simulation is carried out to confirm the accuracy of the approximations.  相似文献   

16.
We compared six common methods in estimating the 2-1-1 (level-2 independent, level-1 mediator, level-1 dependent) multilevel mediation model with a random slope. They were the Bayesian with informative priors, the Bayesian with non-informative priors, the Monte-Carlo, the distribution of the product, the bias-corrected, and the bias-uncorrected parametric percentile residual bootstrap. The Bayesian method with informative priors was superior in relative mean square error (RMSE), power, interval width, and interval imbalance. The prior variance and prior mean were also varied and examined. Decreasing the prior variance increased the power, reduced RMSE and interval width when the prior mean was the true value, but decreasing the prior variance reduced the power when the prior mean was set incorrectly. The influence of misspecification of prior information of the b coefficient on multilevel mediation analysis was greater than that on coefficient a. An illustrate example with the Bayesian multilevel mediation was provided.  相似文献   

17.
本文研究得出四阶矩存在的鞅差序列的线性和构成的平稳序列的积分周期图作为谱函数的估计量时的渐近误差的谱表示式:NE(λ)=2πf~2(l)dl+(μ_4-3σ~4)/(σ~4)F(λ)F(μ)0<λ<π,0<μ<π  相似文献   

18.
The present study evaluated the multiple imputation method, a procedure that is similar to the one suggested by Li and Lissitz (2004), and compared the performance of this method with that of the bootstrap method and the delta method in obtaining the standard errors for the estimates of the parameter scale transformation coefficients in item response theory (IRT) equating in the context of the common‐item nonequivalent groups design. Two different estimation procedures for the variance‐covariance matrix of the IRT item parameter estimates, which were used in both the delta method and the multiple imputation method, were considered: empirical cross‐product (XPD) and supplemented expectation maximization (SEM). The results of the analyses with simulated and real data indicate that the multiple imputation method generally produced very similar results to the bootstrap method and the delta method in most of the conditions. The differences between the estimated standard errors obtained by the methods using the XPD matrices and the SEM matrices were very small when the sample size was reasonably large. When the sample size was small, the methods using the XPD matrices appeared to yield slight upward bias for the standard errors of the IRT parameter scale transformation coefficients.  相似文献   

19.
When both model misspecifications and nonnormal data are present, it is unknown how trustworthy various point estimates, standard errors (SEs), and confidence intervals (CIs) are for standardized structural equation modeling parameters. We conducted simulations to evaluate maximum likelihood (ML), conventional robust SE estimator (MLM), Huber–White robust SE estimator (MLR), and the bootstrap (BS). We found (a) ML point estimates can sometimes be quite biased at finite sample sizes if misfit and nonnormality are serious; (b) ML and MLM generally give egregiously biased SEs and CIs regardless of the degree of misfit and nonnormality; (c) MLR and BS provide trustworthy SEs and CIs given medium misfit and nonnormality, but BS is better; and (d) given severe misfit and nonnormality, MLR tends to break down and BS begins to struggle.  相似文献   

20.
Recent advances in testing mediation have found that certain resampling methods and tests based on the mathematical distribution of 2 normal random variables substantially outperform the traditional z test. However, these studies have primarily focused only on models with a single mediator and 2 component paths. To address this limitation, a simulation was conducted to evaluate these alternative methods in a more complex path model with multiple mediators and indirect paths with 2 and 3 paths. Methods for testing contrasts of 2 effects were evaluated also. The simulation included 1 exogenous independent variable, 3 mediators and 2 outcomes and varied sample size, number of paths in the mediated effects, test used to evaluate effects, effect sizes for each path, and the value of the contrast. Confidence intervals were used to evaluate the power and Type I error rate of each method, and were examined for coverage and bias. The bias-corrected bootstrap had the least biased confidence intervals, greatest power to detect nonzero effects and contrasts, and the most accurate overall Type I error. All tests had less power to detect 3-path effects and more inaccurate Type I error compared to 2-path effects. Confidence intervals were biased for mediated effects, as found in previous studies. Results for contrasts did not vary greatly by test, although resampling approaches had somewhat greater power and might be preferable because of ease of use and flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号