首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
性质:设{a_n}为等差数列,则(1) 1/(2k-1)sum from i=1 to (2k-1)(a_i=a_k).(2)1/2k sum from i=1 to 2k(a_i=(a_k a_(k 1))/2).此性质可叙述为:等差数列奇数项的算术平均值等于中间一项;等差数列偶数项的算术平均值等于中间两项的算术平均值.证明:设d为等差数列{a_n}的公差,则a_i=a_k (i-k)d=(a_k-kd) id(i=1,2,…)应用这个性质,可给出一些高考数列题的简解.例1.在等基数列{a_n}中,若a_3 a_4 a_5 a_6 a_7=450,则a_2 a_8的值等于( ).(A)45,(B)75,(C)180,(D)300.(1991年上海高考题)  相似文献   

2.
一、探索不循环规律 等差数列:对于一列数a_1,a_2,a_3,…,如果始终有后面一项减去前面一项是一个固定常数,那么这列数就叫做等差数列.此时后一项与前一项的差值称为公差,通常记作d.对于等差数列,其第n项为a_n=a_1+(n-1)d,前n项的和为S_n=(n(a_1+a_n))/2.特别地,奇数列:1,3,5,7,9,…是等差数列,公差为2,第n项为2n-1,前n项和为n-2;偶数列:2,4,6,8,10,…是等差数列,公差为2,  相似文献   

3.
命题 若等差数列{a_n}的公差为d,则其前n项的立方和为: a_1~3 a_2~3… a_n~3= 证明 ∵(a_1~2 da_1)~2-(a_1~2-da_1)~2=  相似文献   

4.
众所周知,等差数列{a_n}的通项公式为a_n=a_1 (n-1)d (其中a_1为首项,d为公差)等比数列的通项公式为a_n=a_1q~(n-1)(其中a_1为首项,q为公比)笔者在多年的教学中,认为这两个公式可推广,且推广后的公式更实用。下面是推广后的公式:Ⅰ、已知等差数列{a_n}的第K项为a_k(k=1,2,3……)公差为d,则{a_n}的通项公式为:  相似文献   

5.
<正>等差数列的性质是高考考查重点之一,面对众多的性质,我们如何灵活利用这些性质来解题呢?本文将对等差数列的一个重要性质作出推广,并用所得结论解决一类等差数列的"和问题"。公差为d的等差数列{a_n}的通项公式为a_n=a_1+(n-1)d(n∈N*),若函数f(x)=dx+(a_1-d)(x∈R),则有a_n=f(n)。本  相似文献   

6.
定理:设 a_l、a_m、a_n 为等差数列中的三项,仅 a_1与a_m,a_m 与 a_n 的项距差之比(l-m)/(m-n)=λ,则a_m=(a_l λa_n)/(1 λ)(λ≠-1) (1)证明:设该等差数列的首次为 a_1,公差为 d,则a_l=a_1 (l-1)d (1)a_m=a_1 (m-1)d (2)a_n=a_1 (n-1)d (3)由(1)、(2)得:d=(a_l-a_m)/(l-m);由(2)、(3)得:d=(a_m-a_n)/(m-n).  相似文献   

7.
等差数列中,通项公式a_n=a_1 (n-1)d=nd (a_1-d),显然,点(n,a_1)是直线y=dx a_1-d)上的点,即(1,a_1)、(2,a_2),(3,a_3)…(n,a_n)是该直线上一系列点,其中d是该直线的斜率,因此公差d可用斜率公式来求:d=(a_n a_m)/(n-m)(m、n∈N、n≠m),运用这公式可简捷地解决等差数列中的某些问题。 [例1] 已知一等差数列的第n项是m,第m  相似文献   

8.
杨辉恒等式即现行高中数学教材中所述组合数的第二个基本性质:C_(n-1)~(i-1) C_(n-1)~i=C_n~i(1≤i≤n-1)(1) 我们可以结合等差数列将其推广为定理设a_0,a_1,…,a_n是一个等差数列,则当0≤i≤n时,恒有 a_iC_n~i=a_nC_(n-1)~(i-1) a_0C_(n-1)~i(2) 证明:当i=0或n时,按规定有C_(n-1)~n=0,C_(n-1)~(-1)=0,此时,(2)式显然成立。当1≤i≤n-1时,设等差数列a_0,a_1,…,a_n的公差为d,则a_i=a_0 id (0≤i≤n),于是  相似文献   

9.
本文给出几种特殊数列的求和公式: 1、等差数列各项K次幂的和的递推公式。 2、等差数列与等比数列相应项之积的和的公式。 3、设(a_n)为等差数,公差为d,则 (1)sum from i=1 to n (a_ia_(i+k)…a_(1+k-1))=a_1a_2…a_k+(a_na_(n+1)…a_(n+k)-a_1a_2…a_(k+1))╱(k+1)d (2)sum from i=1 to n (1╱a_1a_2…a_(i+k-1))=1╱((k-1)d)(1╱a_1a_2…q_(n-1))-1╱(a_(n+1)a_(n+2)…a_(n+k=1))  相似文献   

10.
性质:若数列{αn}成等差数列且公差为d,则数列{Sn/n}也为等差数列,且公差为1/2d. 简析:由数列{αn}成等差数列且公差为d知,Sn=na1 n(n-1)/2d,故:  相似文献   

11.
大家知道,公差是d的数列{a_n}的通项为:a_n=a_1 (n-1)d,即a_n=dn (a_1-d),可以把它看做n的一次函数,其图像是以d为斜率,纵轴截距为a_1-d的一条直线。当n∈N时,在直线上的对应点为(1,a_1),(2,a_2)…,(n,a_n)的点集,是该直线点集的一个子集。我们可以利用这种关系,巧解有关等差数列问题。例1 已知等差数列{a_n}的项a_m=n,a_n=m(m≠  相似文献   

12.
题已知{a_n}是等差数列,其公差为 d;{b_n}是等比数列,其公比为 q>1.若 a_2=b_2=2,a_4=b_4.(1)比较 a_1与 b_1,a_3与 b_3的大小;(2)猜想并证明 a_n 与 b_n 大小关系(n≥5).这是成都市高2000级第一次诊断考试数  相似文献   

13.
定理:设 a_(n_1),a_(n_2),…,a_(n_m)是公差为 d 的等差数列{a_n)}中的 m 项,若(n_1 n_2 … n_m)/m=q r/m(0≤r≤m),则a_(n_1) a_(n_2) … a_(n_m)=(m-r)a_q ra_(q_1)(1)或(a_(n_1) a_(n_2) … a_(n_m))/m=a_q (r/m)d (1′)  相似文献   

14.
<正> 由等差数列的求和公式可知,等差数列有这样一个性质: 设等差数列{an}的公差为d,则数列{Sn/n}是以a1为首项,d/2为公差的等差数列. 下面是有关这一性质的应用. 例1 (1996年高考题)已知等差数列{an}的前m项和为30,前  相似文献   

15.
高中数学人教版第一册(上)第137页有这样一道题:两个等差数列{a_n},{b_n},且(a_1 a_2 … a_n)/(b_1 b_2 … b_n)=(7n 2)/(n 3),求(a_5)/(b_5)的值.分析:设{a_n}的公差为d_1,前n项和为S_n,{b_n}的公差为d_2,前n项和为T_n,则(S_n)/(T_n)=(7n 2)/(n 3).  相似文献   

16.
二项式定理以结构的对称性给人以美的享受,这种美感更体现在它的广泛应用上。运用二项式定理证明一些不等式,结构简明,思路清晰,可达事半功倍之效。 例1 已知数列|a_n|,|b_n|,分别是等差数列和等比数列,且a_1=b_1,a_2=b_2,a_1≠a_2;a_n>0(n∈N~ ),求证:当n≥3时,a_nN时a_n<0,矛盾。故d>0。 n≥3,b_n=b_1q~(n-1)=a_(a_2/a_1)~(n-1) =a_1((a_1) a_1)~(n-1)=a_1(1 d/(a_1))~(n-1) =a_1[1 C_(n-1)~1d/(a_1) C_(n-1)~2 … C_(n-1)~(n-1)(d/(a_1))~(n-1)]  相似文献   

17.
贵刊1988年1—2期合刊“高中代数综合训练与检测”中有两道练习题的答案是错误的,现纠正如下: 练习一8.有一等差数列{a_n}和等比数列{b_n} 若a_1=b_1>0,a_(2n 1)=b_(2n 1),试比较a_(n 1)和b_(n 1)的大小。原答案:当q≠1时,a_(n 1)>b_(n 1);当q=1时,a_(n 1)=b_(n 1)是错误的,今举一特例说明: {a_n}:3,3,3,3,3.d=0。 {b_n}:3,-3,3,-3,3。q=-1。它们分别是符合题意的等差数列和等比数列,但当n=2时有a_(n 1)=3=b_(n 1),并非a_(n 1)>b_(n 1)。下面给出正确的解答: 设等差数列{a_n}的首项为a_1,公差为d,  相似文献   

18.
在等差数列的通项公式a_n=a_1 (n-1)d中,通项a_n可以看成是项数n的一次函数(它的定义域是自然数),对一切n∈N,点(n,a_n)共线。 又等差数列前n项和的公式S_n=na_1 (n(n-1)/2)d,可以变形为以下形式,即S_n=(d/2)n~2 (a_1-(d/2))n。因此,公差不等于零的等差数列,前n项的和S_n可以看成是关于n的常数项为零的二次函数,即S_n=an~2  相似文献   

19.
设数列{a_n}是公差为d(d≠0)的等差数列。若令a_0=a_1-d,a_(n 1)=a_n d,则① a_1 a_2 … a_n=(1/2d)(a_na_(n 1)-a_0a_1); ② a_1~3 a_2~3 … a_n~3=(1/4d)[(a_na_(n 1))~2-(a_0a_1)~2]。证①∵ a_ka_(k 1)-a_(k-1)a_k=a_k(a_(k 1)-a_(k-1)=2da_k,k=1,2,…。令k=1,2,…,n, 得n个等式,将它们的两边分别相加得 a_na_(a 1)-a_0a_1=2d(a_1 a_2 … a_n)。∴ a_1 a_2 … a_n=(1/(2d))(a_na_(n 1)-a_0a_1)。②∵ (a_ka_(k 1))~2-(a_(k-1)a_k)~2=a_k~2[a_(k 1)~2  相似文献   

20.
(一) 解等差数列的有关问题。我们把等差数列的通项公式变形为a_n=dn+(a_1-d)(d≠0),易见它是关于n的一次式。这便表明:从几何上研究等差数列,就是线性函数y=dx+(a_1-d)(x∈R)时的有序点的图象上当自变量x依次取自然数列,而公差d就是点列所在直线的斜率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号