首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates a new adaptive iterative learning control protocol design for uncertain nonlinear multi-agent systems with unknown gain signs. Based on Nussbaum gain, adaptive iterative learning control protocols are designed for each follower agent and the adaptive laws depend on the information available from the agents in the neighbourhood. The proper protocols guarantee each follower agent track the leader perfectly on the finite time interval and the Nussbaum-type item can seek control direction adaptively. Furthermore, the formation problem is studied as an extension. Finally, simulation examples are given to demonstrate the effectiveness of the proposed method in this article.  相似文献   

2.
This paper concerns an adaptive fuzzy tracking control problem for a class of switched uncertain nonlinear systems in strict-feedback form via the modified backstepping technique. The unknown nonlinear functions are approximated by the generalized fuzzy hyperbolic model (GFHM). It is shown that if the designed parameters in the controller and adaptive laws are appropriately selected, then all closed-loop signals are bounded and the stability of the system can be kept under average dwell time methods. In the end, simulation studies are presented to illustrate the effectiveness of the proposed method.  相似文献   

3.
This paper mainly investigates the event-triggered tracking control for couple-group multi-agent systems in a disturbance environment, where the topology of the agents is switching. Consensus protocol is designed for the case that some agents reach a consistent value, while the other agents reach another consistent value. Then, event-triggered control laws are designed to reduce the frequency of individual actuation updating for discrete-time agent dynamics. Moreover, by applying the Lyapunov function method, a sufficient condition of couple-group consensus is established in terms of a matrix inequality when the communication topology is switching. Finally, simulation examples are given to demonstrate the effectiveness of the proposed methods.  相似文献   

4.
This paper is devoted to the adaptive finite-time control for a class of stochastic nonlinear systems driven by the noise of covariance. The traditional growth conditions assumed on the drift and diffusion terms are removed through a technical lemma, and the negative effect generated by unknown covariance noise is compensated by combining adaptive control technique with backstepping recursive design. Then, without imposing any growth assumptions, a smooth adaptive state-feedback controller is skillfully designed and analyzed with the help of the adding a power integrator method and stochastic backstepping technique. Distinctive from the global stability in probability or asymptotic stability in probability obtained in related work, the proposed design algorithm can guarantee the solution of the closed-loop system to be finite-time stable in probability. Finally, a stochastic simple pendulum system is skillfully constructed to demonstrate the effectiveness of the proposed control scheme.  相似文献   

5.
In this paper, the adaptive tracking control problem for a class of strict-feedback nonlinear systems with quantized input signal is investigated. The hysteretic quantizer is introduced to avoid the chattering phenomenon and the backstepping method is used to design the controller. The tracking errors are guaranteed to be bounded in a small neighborhood of zero via appropriate design parameters. Finally, two simulation examples are given, and the simulation results further demonstrate the effectiveness of the proposed method.  相似文献   

6.
In this paper, we first consider the containment control problem of singular heterogeneous multi-agent systems, where all the followers converge to the convex hull spanned by the leaders. To solve this problem, we propose two distributed control laws: one is based on the state feedback control framework, which is suitable for the case that the full state information of each follower is accessible; and the other is based on the output regulation framework, where each follower only can access to its output. Furthermore, the distributed observers are designed for every follower to estimate the convex combination of the leader states which is determined by the communication graph. It should be noted that our results can also regard the non-singular multi-agent systems’ containment control problem as a special case. Finally, simulation results corroborate the effectiveness of our analytical results.  相似文献   

7.
This paper addresses the challenging problem of decentralized adaptive control for a class of coupled hidden leader-follower multi-agent systems, in which each agent is described by a nonlinearly parameterized uncertain model in discrete time and can interact with its neighbors via the history information from its neighbors. One of the agents is a leader, who knows the desired reference trajectory, while other agents cannot receive the desired reference signal or are unaware of existence of the leader. In order to tackle unknown internal parameters and unknown high-frequency gains, a projection-type parameter estimation algorithm is proposed. Based on the certainty equivalence principle and neighborhood history information, the decentralized adaptive control is designed, under which, the boundedness of identification error is guaranteed with the help of the Lyapunov theory. Under some conditions, it is shown that the multi-agent system eventually achieves synchronization in the presence of strong couplings. Finally, a simulation example is given to support the results of the proposed scheme.  相似文献   

8.
In this paper, an adaptive quantized control method with guaranteed transient performance is presented for a class of uncertain nonlinear systems. By introducing the Nussbaum function technique, the difficulty caused by quantization is handled and a novel adaptive control scheme is designed. In comparing with the existing adaptive control scheme, the key advantages of the proposed control scheme are that the controller needs no information about the parameters of the quantizer and the stability of the closed-loop system and the transient performance are independent of the coarseness of the quantizer. Based on Lyapunov stability theory and Barbalat’s Lemma, it is proven that all the signals in the resulting closed-loop system are bounded and the tracking error converges to zero asymptotically with the prescribed performance bound at all times. Simulation results are presented to verify the effectiveness of the proposed control method.  相似文献   

9.
This paper solves the problem of adaptive neural dynamic surface control (DSC) for a class of full state constrained stochastic nonlinear systems with unmodeled dynamics. The concept of the state constraints in probability is first proposed and applied to the stability analysis of the system. The full state constrained stochastic nonlinear system is transformed to the system without state constraints through a nonlinear mapping. The unmodeled dynamics is dealt with by introducing a dynamic signal and the adaptive neural dynamic surface control method is explored for the transformed system. It is proved that all signals of the closed-loop system are bounded in probability and the error signals are semi-globally uniformly ultimately bounded(SGUUB) in mean square or the sense of four-moment. At the same time, the full state constraints are not violated in probability. The validity of the proposed control scheme is demonstrated through the simulation examples.  相似文献   

10.
This paper is concerned with the adaptive control problem of a class of output feedback nonlinear systems with unmodeled dynamics and output constraint. Two dynamic surface control design approaches based on integral barrier Lyapunov function are proposed to design controller ensuring both desired tracking performance and constraint satisfaction. The radial basis function neural networks are utilized to approximate unknown nonlinear continuous functions. K-filters and dynamic signal are introduced to estimate the unmeasured states and deal with the dynamic uncertainties, respectively. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded, while the output constraint is never violated. Simulation results demonstrate the effectiveness of the proposed approaches.  相似文献   

11.
This paper investigates the event-triggered containment control for a class of second-order nonlinear multi-agent systems. A centralized event-triggered protocol is first designed, then the result is extended to the decentralized counterpart. By the tools from nonsmooth analysis, it is shown that the containment control objective can be achieved via the presented protocols. To avoid the Zeno behavior, the event-triggered conditions are redesigned. It is proven that all followers can asymptotically converge to the convex hull spanned by multiple leaders via the proposed strategies and the Zeno behavior can be excluded, simultaneously. Two examples are given to illustrate the feasibility of the proposed protocols.  相似文献   

12.
In this paper, the distributed impulsive control for heterogeneous multi-agent systems based on event-triggered approach is investigated. According to whether the information transfer of the dynamic compensator is continuous or not, two different kinds of impulsive controllers are designed, respectively. Based on these two kinds of controllers, the corresponding distributed event-triggered conditions are provided, which make the impulsive instants of all agents do not need occur simultaneously. Moreover, the lower bound of impulsive intervals can also be guaranteed for all the event-triggered conditions, which means that the control schemes given in this paper can avoid the Zeno-behavior successfully. Eventually, a simulation example is proposed to support the effectiveness of the results obtained in this paper.  相似文献   

13.
A novel adaptive event-triggered control protocol is developed to investigate the tracking control problem of multi-agent systems with general linear dynamics. By introducing the event-triggered control strategy, each agent can decide when to transfer its state to its neighbors at its own triggering instants, which can greatly reduce communication burden of agents. It is shown that the “Zeno phenomenon” does not occur by verifying that there exists a positive lower bound on the inter-event time intervals of agents under the proposed adaptive event-triggered control algorithm. Finally, an example is provided to testify the effectiveness of the obtained theoretical results.  相似文献   

14.
Time-varying formation tracking problems for high-order multi-agent systems with switching topologies are investigated. Different from the previous work, the states of the followers form a predefined time-varying formation while tracking the state of the leader with bounded unknown control input. Besides, the communication topology can be switching, and the dynamics of each agent can have nonlinearities. Firstly, a nonlinear time-varying formation tracking control protocol is presented which is constructed using only local neighboring information. Secondly, an algorithm with four steps is proposed to design the time-varying formation tracking protocol, where the time-varying formation tracking feasibility condition is introduced. Thirdly, by using the Lyapunov theory, the stability of the proposed algorithm is proven. It is proved that the high-order multi-agent system with switching topologies achieves the time-varying formation tracking if the feasibility condition holds and the dwell time is larger than a positive constant. Finally, a numerical example with six followers and one leader is given to demonstrate the effectiveness of the obtained results.  相似文献   

15.
This paper is concerned with the image-based visual servoing (IBVS) control for uncalibrated camera-robot system with unknown dead-zone constraint, where the uncertain kinematics and dynamics are also considered. The control implementation is achieved by constructing a smooth inverse model for dead-zone-input to eliminate the nonlinear effect resulting from the actuator constraint. A novel adaptive algorithm, which does not require a priori knowledge of the parameter intervals of dead-zone model, is proposed to update the parameter values online, and the dead-zone slopes are not required the same. Furthermore, to accommodate the uncertainties of uncalibrated camera-robot system, adaptation laws are developed to estimate the uncertain parameters, simultaneously avoiding singularity of the image Jacobian matrix. With the full consideration of unknown dead-zone constraint and system uncertainties, an adaptive robust visual tracking control scheme together with dead-zone compensation is subsequently established such that the image tracking error converges to the origin. Based on a 3-DOF manipulator, simulations are conducted to verify the tracking performance of the proposed controller.  相似文献   

16.
A global decentralized low-complexity tracker design methodology is proposed for uncertain interconnected high-order nonlinear systems with unknown high powers. It is assumed that interconnected nonlinearities are bounded by completely unknown nonlinearities, rather than, a linear combination of high-ordered state variables. Compared with the existing decentralized results for interconnected nonlinear systems with known high powers, the decentralized robust controller, which achieves the pre-designable transient and steady-state tracking performance for each subsystem, is designed by employing nonlinear error surfaces with time-varying performance functions, regardless of unknown nonlinear interactions and high powers related to virtual and actual control variables. The proposed decentralized continuous robust low-complexity tracker is realized without the use of any adaptive or function approximation techniques for estimating unknown parameters and nonlinearities. The stability and preassigned tracking performance of the resulting decentralized low-complexity control system are thoroughly analyzed in the Lyapunov sense. Finally, simulation results on coupled underactuated mechanical systems are provided to show the effectiveness of the proposed theoretical result.  相似文献   

17.
This paper addresses the distributed adaptive output-feedback tracking control problem of uncertain multi-agent systems in non-affine pure-feedback form under a directed communication topology. Since the control input is implicit for each non-affine agent, we introduce an auxiliary first-order dynamics to circumvent the difficulty in control protocol design and avoid the algebraic loop problem in control inputs and the unknown control gain problem. A decentralized input-driven observer is applied to reconstruct state information of each agent, which makes the design and synthesis extremely simplified. Based on the dynamic surface control technique and neural network approximators, a distributed output-feedback control protocol with prescribed tracking performance is derived. Compared with the existing results, the restrictive assumptions on the partial derivative of non-affine functions are removed. Moreover, it is proved that the output tracking errors always stay in a prescribed performance bound. The simulation results are provided to demonstrate the effectiveness of the proposed method.  相似文献   

18.
This paper studies the time-varying output formation tracking problems for heterogeneous linear multi-agent systems with multiple leaders in the presence of switching directed topologies, where the agents can have different system dynamics and state dimensions. The outputs of followers are required to accomplish a given time-varying formation configuration and track the convex combination of leaders’ outputs simultaneously. Firstly, using the neighboring relative information, a distributed observer is constructed for each follower to estimate the convex combination of multiple leaders’ states under the influences of switching directed topologies. The convergence of the observer is proved based on the piecewise Lyapunov theory and the threshold for the average dwell time of the switching topologies is derived. Then, an output formation tracking protocol based on the distributed observer and an algorithm to determine the control parameters of the protocol are presented. Considering the features of heterogeneous dynamics, the time-varying formation tracking feasible constraints are provided, and a compensation input is applied to expand the feasible formation set. Sufficient conditions for the heterogeneous multi-agent systems with multiple leaders and switching directed topologies to achieve the desired time-varying output formation tracking under the designed protocol are proposed. Finally, simulation examples are given to validate the theoretical results.  相似文献   

19.
This paper investigates the state-feedback stabilization problem in the smooth case for a class of high-order nonlinear systems with time delays. By generalizing a novel radial basis function neural network (RBF NN) approximation approach to high-order nonlinear systems, we successfully remove the power order restriction and the growth conditions on system nonlinearities. It should be pointed out that the knowledge of NN nodes and weights does not need to be known a priori and operate on-line, and the adaptive parameter is only one. Furthermore, without imposing any growth assumptions on system nonlinearities, we construct a smooth adaptive state-feedback controller which guarantees the closed-loop system to be semi-globally uniformly ultimately bounded (SGUUB). Finally, we apply the proposed scheme to a single-link robot system and a numerical example to demonstrate the effectiveness of the controller.  相似文献   

20.
In this paper, the problem of adaptive fuzzy fault-tolerant control is investigated for a class of switched uncertain pure-feedback nonlinear systems under arbitrary switching. The considered actuator failures are modeled as both lock-in-place and loss of effectiveness. By utilizing mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Under the framework of backstepping design technique and common Lyapunov function (CLF), an adaptive fuzzy fault-tolerant control (FTC) method with predefined performance bounds is developed. It is proved that under the proposed controller, all the signals of the close-loop systems are bounded and the state tracking error for each step remains within the prescribed performance bound (PPB) regardless of actuator faults and the system switchings. In addition, the tracking errors and magnitudes of control inputs can be reduced by adjusting the PPB parameters of errors in the first and last steps. The simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号