首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper investigates the event-triggered containment control for a class of second-order nonlinear multi-agent systems. A centralized event-triggered protocol is first designed, then the result is extended to the decentralized counterpart. By the tools from nonsmooth analysis, it is shown that the containment control objective can be achieved via the presented protocols. To avoid the Zeno behavior, the event-triggered conditions are redesigned. It is proven that all followers can asymptotically converge to the convex hull spanned by multiple leaders via the proposed strategies and the Zeno behavior can be excluded, simultaneously. Two examples are given to illustrate the feasibility of the proposed protocols.  相似文献   

2.
In this paper, we first consider the containment control problem of singular heterogeneous multi-agent systems, where all the followers converge to the convex hull spanned by the leaders. To solve this problem, we propose two distributed control laws: one is based on the state feedback control framework, which is suitable for the case that the full state information of each follower is accessible; and the other is based on the output regulation framework, where each follower only can access to its output. Furthermore, the distributed observers are designed for every follower to estimate the convex combination of the leader states which is determined by the communication graph. It should be noted that our results can also regard the non-singular multi-agent systems’ containment control problem as a special case. Finally, simulation results corroborate the effectiveness of our analytical results.  相似文献   

3.
The goal of this paper is to propose an optimal fault tolerant control (FTC) approach for multi-agent systems (MASs). It is assumed that the agents have identical affine dynamics. The underlying communication topology is assumed to be a directed graph. The concepts of both inverse optimality and partial stability are further employed for designing the control law fully developed in the paper. Firstly, the optimal FTC problem for linear MASs is formulated and then it is extended to MASs with affine nonlinear dynamics. To solve the Hamilton-Jacobi-Bellman (HJB) equation, an Off-policy Reinforcement Learning is used to learn the optimal control law for each agent. Finally, a couple of numerical examples are provided to demonstrate the effectiveness of the proposed scheme.  相似文献   

4.
This paper studies the time-varying output formation tracking problems for heterogeneous linear multi-agent systems with multiple leaders in the presence of switching directed topologies, where the agents can have different system dynamics and state dimensions. The outputs of followers are required to accomplish a given time-varying formation configuration and track the convex combination of leaders’ outputs simultaneously. Firstly, using the neighboring relative information, a distributed observer is constructed for each follower to estimate the convex combination of multiple leaders’ states under the influences of switching directed topologies. The convergence of the observer is proved based on the piecewise Lyapunov theory and the threshold for the average dwell time of the switching topologies is derived. Then, an output formation tracking protocol based on the distributed observer and an algorithm to determine the control parameters of the protocol are presented. Considering the features of heterogeneous dynamics, the time-varying formation tracking feasible constraints are provided, and a compensation input is applied to expand the feasible formation set. Sufficient conditions for the heterogeneous multi-agent systems with multiple leaders and switching directed topologies to achieve the desired time-varying output formation tracking under the designed protocol are proposed. Finally, simulation examples are given to validate the theoretical results.  相似文献   

5.
This paper is concerned with the tracking control problem for nonlinear heterogeneous multi-agent systems with a static leader, where the leader’s state is only available to a small portion of follower agents. The considered multi-agent system is composed of first- and second-order follower agents with unknown nonlinearities and unknown disturbances, and the communication graph of follower agents is fixed and directed. A robust adaptive neural network controller is designed for each follower agent. By applying the Lyapunov theory with the singular value analysis method, it is shown that all follower agents will synchronize to the leader agent with bounded residual errors. A numerical example is presented to demonstrate the effectiveness of the theoretical findings.  相似文献   

6.
A composite anti-disturbance control problem for a class of nonlinear systems is studied in this paper. There are two types of disturbances in the systems, one is the matched disturbance with bounded variation rate, the other is the unmatched time-varying disturbances. A nonlinear disturbance observer is designed to estimate the matched disturbances, which can be presented separately from the controller design. By integrating DOBC with back-stepping method, a composite DOBC and back-stepping controller is proposed, and the disturbance estimations are introduced into the design of virtual control laws to compensate the unmatched disturbances. In addition, it is proved that all the states in the closed-loop system are uniformly ultimate bounded (UUB). Finally, a numerical example is given to demonstrate the feasibility and effectiveness of the proposed method.  相似文献   

7.
In this paper, a command filter-based adaptive fuzzy controller is constructed for a class of nonlinear systems with uncertain disturbance. By using the error compensation signals and fuzzy logic system, a command filter-based control strategy is presented to make that the tracking error converge to an any small neighborhood of zero and all closed-loop signals are bounded. In the design procedure, fuzzy logic system is employed to estimate unknown package nonlinear functions, which avoids excessive and burdensome computations. The control scheme not only resolves the explosion of complexity problem but also eliminates the filtering error in finite-time. An example has evaluated the validity of the control method.  相似文献   

8.
This paper addresses the distributed adaptive output-feedback tracking control problem of uncertain multi-agent systems in non-affine pure-feedback form under a directed communication topology. Since the control input is implicit for each non-affine agent, we introduce an auxiliary first-order dynamics to circumvent the difficulty in control protocol design and avoid the algebraic loop problem in control inputs and the unknown control gain problem. A decentralized input-driven observer is applied to reconstruct state information of each agent, which makes the design and synthesis extremely simplified. Based on the dynamic surface control technique and neural network approximators, a distributed output-feedback control protocol with prescribed tracking performance is derived. Compared with the existing results, the restrictive assumptions on the partial derivative of non-affine functions are removed. Moreover, it is proved that the output tracking errors always stay in a prescribed performance bound. The simulation results are provided to demonstrate the effectiveness of the proposed method.  相似文献   

9.
In this paper, the finite-time exponential consensus problem is addressed for a class of multi-agent systems against some disturbed factors, which include system uncertainties, communication perturbations, and actuator faults. All disturbed factors are supposed to be influenced by internal and external effects of systems. The internal effects are described in terms of dependency on the system states, while the external actions are restricted by constant bounds. To obtain the information of the rate of dependency on the states and constant bounds, an adaptive mechanism is designed to estimate the rate and bounds. Based on these estimates, a distributed adaptive sliding mode controller is constructed to eliminate the effects of those disturbed factors. Then exponential consensus of the closed-loop adaptive multi-agent system is achieved within a finite time based on Lyapunov stability theory. The efficiency of the developed adaptive consensus control strategy is verified by a coupled system with four F-18 aircrafts of decoupled longitudinal model.  相似文献   

10.
In this paper, the distributed impulsive control for heterogeneous multi-agent systems based on event-triggered approach is investigated. According to whether the information transfer of the dynamic compensator is continuous or not, two different kinds of impulsive controllers are designed, respectively. Based on these two kinds of controllers, the corresponding distributed event-triggered conditions are provided, which make the impulsive instants of all agents do not need occur simultaneously. Moreover, the lower bound of impulsive intervals can also be guaranteed for all the event-triggered conditions, which means that the control schemes given in this paper can avoid the Zeno-behavior successfully. Eventually, a simulation example is proposed to support the effectiveness of the results obtained in this paper.  相似文献   

11.
This paper addresses the mean-square consensus problems of continuous-time heterogeneous multi-agent systems with communication noises. First, in order to attenuate the communication noises, time-varying consensus gains are applied in the consensus algorithm. Then, by using the tools of algebraic graph theory and stochastic analysis, sufficient conditions for the mean-square consensus are given for the cases with and without a leader. Finally, simulations are provided to demonstrate the effectiveness of the proposed algorithms.  相似文献   

12.
A novel adaptive event-triggered control protocol is developed to investigate the tracking control problem of multi-agent systems with general linear dynamics. By introducing the event-triggered control strategy, each agent can decide when to transfer its state to its neighbors at its own triggering instants, which can greatly reduce communication burden of agents. It is shown that the “Zeno phenomenon” does not occur by verifying that there exists a positive lower bound on the inter-event time intervals of agents under the proposed adaptive event-triggered control algorithm. Finally, an example is provided to testify the effectiveness of the obtained theoretical results.  相似文献   

13.
This paper addresses the challenging problem of decentralized adaptive control for a class of coupled hidden leader-follower multi-agent systems, in which each agent is described by a nonlinearly parameterized uncertain model in discrete time and can interact with its neighbors via the history information from its neighbors. One of the agents is a leader, who knows the desired reference trajectory, while other agents cannot receive the desired reference signal or are unaware of existence of the leader. In order to tackle unknown internal parameters and unknown high-frequency gains, a projection-type parameter estimation algorithm is proposed. Based on the certainty equivalence principle and neighborhood history information, the decentralized adaptive control is designed, under which, the boundedness of identification error is guaranteed with the help of the Lyapunov theory. Under some conditions, it is shown that the multi-agent system eventually achieves synchronization in the presence of strong couplings. Finally, a simulation example is given to support the results of the proposed scheme.  相似文献   

14.
This paper is concerned with the image-based visual servoing (IBVS) control for uncalibrated camera-robot system with unknown dead-zone constraint, where the uncertain kinematics and dynamics are also considered. The control implementation is achieved by constructing a smooth inverse model for dead-zone-input to eliminate the nonlinear effect resulting from the actuator constraint. A novel adaptive algorithm, which does not require a priori knowledge of the parameter intervals of dead-zone model, is proposed to update the parameter values online, and the dead-zone slopes are not required the same. Furthermore, to accommodate the uncertainties of uncalibrated camera-robot system, adaptation laws are developed to estimate the uncertain parameters, simultaneously avoiding singularity of the image Jacobian matrix. With the full consideration of unknown dead-zone constraint and system uncertainties, an adaptive robust visual tracking control scheme together with dead-zone compensation is subsequently established such that the image tracking error converges to the origin. Based on a 3-DOF manipulator, simulations are conducted to verify the tracking performance of the proposed controller.  相似文献   

15.
This paper investigates the finite-time consensus problem of uncertain nonlinear multi-agent systems with asymmetric time-varying delays and directed communication topology. An auxiliary system is firstly designed to deal with the continuous or discontinuous time-varying communication delays. Based on the finite-time input-to-output framework, a novel consensus scheme relying on local delayed information exchange is proposed. Moreover, by utilizing an auxiliary integrated regressor matrix and vector method, the system uncertainties can be accurately estimated. Then the consensus of multi-agent systems can be achieved within finite time by selecting the control gains simply. Finally, numerical simulations are provided to demonstrate the effectiveness of the proposed control algorithms.  相似文献   

16.
This paper deals with the containment control problem for multi-agent systems with exogenous disturbances. A disturbance observer-based control approach is employed to estimate the disturbances generated by an exogenous system. Consequently, distributed disturbance observer-based containment control protocols are proposed by using the state feedback control and the output feedback control, respectively. Furthermore, with the help of algebraic graph theory and Lyapunov stability theory, sufficient conditions are established to ensure that multi-agent systems with exogenous disturbances can achieve containment control via the disturbance observer-based approach. Finally, the effectiveness of our theoretical results is verified by providing numerical simulation examples.  相似文献   

17.
A robust multi-tracking problem is solved for heterogeneous multi-agent systems with uncertain nonlinearities and disturbances. The nonlinear function satisfies a Lipschitz condition with a time-varying gain, the integral of which is bounded by a linear function. A distributed impulsive protocol is proposed, where the position data and velocity data of desired trajectories are needed only at sampling instants. Based on the system decomposition technique, the error dynamic system of achieving multi-tracking is decomposed into two impulsive dynamic systems with vanishing perturbation and nonvanishing perturbation, respectively. Constructing a nominal model, then the multi-tracking problem is converted into the stability of impulsive dynamic system with nonvanishing perturbation under some conditions. It is proved that the proposed impulsive protocol is robust enough to solve the multi-tracking problem. Numerical examples are presented to illustrate the effectiveness of our theoretical results.  相似文献   

18.
This work deals with state synchronization of heterogeneous linear agents with unknown dynamics. The problem is solved by formulating the synchronization problem as a special model reference adaptive control where each agent tries to converge to the model defined by its neighbors. For those agents that do not know the reference signal that drives the flock, a fictitious reference is estimated in place of the actual one: the estimation of such reference is distributed and requires measurements from neighbors. By using a matching condition assumption, which is imposed so that the agents can converge to the same behavior, the fictitious reference estimation leads to adaptive laws for the feedback and the coupling gains arising from distributed matching conditions. In addition, the coupling connection is not scalar as in most literature, but possibly vector-valued. The proposed approach is applicable to heterogeneous agents with arbitrarily large matched uncertainties. A Lyapunov-based approach is derived to show analytically asymptotic convergence of the synchronization error: robustification in the presence of bounded errors or unknown (constant) leader input is also discussed. Finally, a motivational example is presented in the context of Cooperative Adaptive Cruise Control and numerical examples are provided to demonstrate the effectiveness of the proposed method.  相似文献   

19.
The paper is concerned with the modeling and stabilization problem of networked control systems under simultaneous consideration of bounded packet dropouts and occasionally missing control inputs. In particular, the focus of the paper is to capture the case where the packet dropouts and control inputs missing are subject to multiple sampling periods, and not periodic as in existing results. By input-delay approach and then fully considering the probability distribution characteristic of packet dropouts in the modeling, the original linear system is firstly transformed to a switched stochastic time-delay system. Meanwhile, the probability distribution values of stochastic delay taking values in m(m ≥ 2) given intervals can be explicitly obtained, which is of vital importance to analyse the stabilization problem of considered system. Secondly, by means of the average dwell time technique, some sufficient conditions in terms of linear matrix inequalities for the existence of desired stabilizing controller are derived. Finally, an illustrative example is given to illustrate the effectiveness of the proposed stabilizing controller and some less conservative results are obtained.  相似文献   

20.
This paper investigates hybrid observer design of a class of unknown input switched nonlinear systems. The distinguishing feature of the proposed method is that the stability of all subsystems of the error switched systems is not necessarily required. First, an output derivative-based method and time-varying coordinate transformation are considered to eliminate the unknown input. Then in order to maintain a satisfactory estimation performance, an impulsive full-order and switched reduced-order observer are developed with a pair of upper and lower dwell time bounds and constructing time-varying Lyapunov functions combined with convex combination technique. In addition, the time-varying Lyapunov functions method is also used to analyze the stability of a class of error switched nonlinear systems with stable subsystems. Finally, two examples are presented to demonstrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号