首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a delayed fractional eco-epidemiological model with incommensurate orders is proposed, and a control strategy of this model is discussed. Firstly, for the system with no controller, the stability and Hopf bifurcation with respect to time delay are investigated. Secondly, under the influence of the controller, the stability and Hopf bifurcation of the system is discussed, and it is indicated that the stability of the system can be changed by increasing the feedback control delay. In particular, a separate study is carried out on the bifurcation with respect to the extended feedback delay, and the bifurcation point is calculated. At last, to support the theoretical results, some numerical simulations are depicted.  相似文献   

2.
The paper considers a class of neural networks where flux-controlled dynamic memristors are used in the neurons and finite concentrated delays are accounted for in the interconnections. Goal of the paper is to thoroughly analyze the nonlinear dynamics both in the flux-charge domain and in the current-voltage domain. In particular, a condition that is expressed in the form of a linear matrix inequality, and involves the interconnection matrix, the delayed interconnection matrix, and the memristor nonlinearity, is given ensuring that in the flux-charge domain the networks possess a unique globally exponentially stable equilibrium point. The same condition is shown to ensure exponential convergence of each trajectory toward an equilibrium point in the voltage-current domain. Moreover, when a steady state is reached, all voltages, currents and power in the networks vanish, while the memristors act as nonvolatile memories keeping the result of computation, i.e., the asymptotic values of fluxes. Differences with existing results on stability of other classes of delayed memristor neural networks, and potential advantages over traditional neural networks operating in the typical voltage-current domain, are discussed.  相似文献   

3.
In this paper, we consider the stability of a class of stochastic delay Hopfield neural networks driven by G-Brownian motion. Under a sublinear expectation framework, we give the definition of exponential stability in mean square and construct some conditions such that the stochastic system is exponentially stable in mean square. Moreover, we also consider the stability of the Euler numerical solution of such equation. Finally, we give an example and its numerical simulation to illustrate our results.  相似文献   

4.
Using the algebraic state space representation (ASSR) method, this paper investigates the set stability and synchronization of Boolean networks with probabilistic time delays (PTDs). Firstly, an equivalent stochastic system is established for the Boolean network with PTDs by using the ASSR method. Secondly, based on the probabilistic state transition matrix of equivalent stochastic system, a necessary and sufficient condition is proposed for the set stability of Boolean networks with PTDs. Thirdly, as an application of set stability, the synchronization of coupled Boolean networks with PTDs is studied, and a necessary and sufficient condition is presented. Finally, an illustrative example is given to demonstrate the effectiveness of the obtained new results.  相似文献   

5.
All existing works regarding the throughput of underwater acoustic networks (UWANs) explicitly ignore multipath effect of underwater acoustic channels (UWACs), which, however, is a prominent feature in underwater environments. In this paper, we investigate the throughput of UWANs with significant multipath delays. We extend the popular delay matrix model to make it suitable for analysis of throughput in UWANs with multipath delays. We differentiate between two cases of successful transmissions corresponding to different channel models. With the extended model, we derive the upper bounds of throughput for UWANs under different channel models with various fair constraints. We also show the necessary conditions for achieving these upper bounds under different scenarios. In addition, with derived upper bounds and necessary conditions, we offer designing rules for optimal schedules in UWANs with different channel models. Some examples of optimal schedules which could achieve the upper bounds under different scenarios are also provided.  相似文献   

6.
7.
This paper studies the E-exponential stability of mode-dependent linear switched singular systems with stable and unstable subsystems. First, by constructing an appropriate multiple discontinuous Lyapunov function, new sufficient conditions of E-exponential stability for linear switched singular systems are established. Considering the feature of mode-dependent average dwell time switching, we adopt the switching strategy where fast switching and slowing switching are respectively applied to unstable and stable subsystems. Compared with the existing results, our approach is more flexible and tighter bounds can be obtained. Finally, a numerical example is provided to illustrate the effectiveness of the proposed criteria.  相似文献   

8.
In this paper, an interventional bipartite consensus problem is considered for a high-order multi-agent system with unknown disturbance dynamics. The interactions among the agents are cooperative and competitive simultaneously and thus the interaction network (just called coopetition network in sequel for simplicity) is conveniently modeled by a signed graph. When the coopetition network is structurally balanced, all the agents are split into two competitive subgroups. An exogenous system (called leader for simplicity) is introduced to intervene the two competitive subgroups such that they can reach a bipartite consensus. The unknown disturbance dynamics are assumed to have linear parametric models. With the help of the notation of a disagreement state variable, decentralized adaptive laws are proposed to estimate the unknown disturbances and a dynamic output-feedback consensus control is designed for each agent in a fully distributed fashion, respectively. The controller design guarantees that the state matrix of the closed-loop system can be an arbitrary predefined Hurwitz matrix. Under the assumption that the coopetition network is structurally balanced and the leader is a root of the spanning tree in an augmented graph, the bipartite consensus and the parameter estimation are analyzed by invoking a common Lyapunov function method when the coopetition network is time-varying according to a piecewise constant switching signal. Finally, simulation results are given to demonstrate the effectiveness of the proposed control strategy.  相似文献   

9.
In the process of online storytelling, individual users create and consume highly diverse content that contains a great deal of implicit beliefs and not plainly expressed narrative. It is hard to manually detect these implicit beliefs, intentions and moral foundations of the writers.We study and investigate two different tasks, each of which reflect the difficulty of detecting an implicit user’s knowledge, intent or belief that may be based on writer’s moral foundation: (1) political perspective detection in news articles (2) identification of informational vs. conversational questions in community question answering (CQA) archives. In both tasks we first describe new interesting annotated datasets and make the datasets publicly available. Second, we compare various classification algorithms, and show the differences in their performance on both tasks. Third, in political perspective detection task we utilize a narrative representation language of local press to identify perspective differences between presumably neutral American and British press.  相似文献   

10.
11.
In this paper, the synchronization problem is studied for a class of stochastic discrete-time complex networks with partial mixed impulsive effects. The involving impulsive effects, called partial mixed impulses, can be regarded as local and time-varying impulses, which means that impulses are not only injected into a fraction of nodes in networks but also contain synchronizing and desynchronizing impulses at the same time. In order to handle this case, several mathematical techniques are proposed to tackle mixed impulsive effects in discrete-time dynamical systems. Based on the variation of parameters formula, several sufficient criteria are derived to ensure that synchronization of the addressed networks can be achieved in mean square. The obtained criteria not only rely on the strengths of mixed impulses and the impulsive intervals, but also can reduce conservativeness. Finally, a numerical example is presented to show the effectiveness of our results for neural networks.  相似文献   

12.
In this paper, we investigate the asymptotic stability of fractional-order fuzzy neural networks with fixed-time impulse and time delay. According to the fractional Barbalat’s lemma, Riemann–Liouville operator and Lyapunov stability theorem, some sufficient conditions are obtained to ensure the asymptotic stability of the fractional-order fuzzy neural networks. Two numerical examples are also given to illustrate the feasibility and effectiveness of the obtained results.  相似文献   

13.
This paper is concerned with the stability of discrete-time high-order neural networks (HONNs) with delays and impulses. Without applying the Lyapunov function, some sufficient conditions, which ensure the exponential stability and asymptotic stability of considered networks involving delays and impulses, are derived based on the fixed point theory. Finally, several numerical examples are given to demonstrate the effectiveness of the obtained results.  相似文献   

14.
The paper presents results for the second moment stability of continuous-time Markov jump systems with quadratic terms, aiming for engineering applications. Quadratic terms stem from physical constraints in applications, as in electronic circuits based on resistor (R), inductor (L), and capacitor (C). In the paper, an RLC circuit supplied a load driven by jumps produced by a Markov chain—the RLC circuit used sensors that measured the quadratic of electrical currents and voltages. Our result was then used to design a stabilizing controller for the RLC circuit with measurements based on that quadratic terms. The experimental data confirm the usefulness of our approach.  相似文献   

15.
This paper is concerned with the stability analysis of linear continuous-time delay-difference systems with multiple delays. Firstly, a new method for testing the L2-exponential stability of the considered system is proposed, which is easier to use than the one in the existing literature. In view of the conservatism and the complexity of the obtained stability conditions in the existing literature, a complete Lyapunov–Krasovskii functional (LKF) is constructed by analyzing the relationship among the multiple delays. Sufficient conditions for both L2-exponential stability and exponential stability are then derived based on the constructed LKFs, which are delay-independent. Exponential convergence rate for the considered system is also investigated by a new method, which is shown to be equivalent to the existing approach by using weighted LKFs. Robust stability under parameter uncertainties is also investigated. Numerical examples are provided to demonstrate the effectiveness and less conservativeness of the proposed method.  相似文献   

16.
This paper concerns the exponential synchronization problem of stochastic complex networks with multiple weights (SCNMW). By the method of network split, SCNMW can be modelled as stochastic coupled systems driven by Brownian motion. By combining graph theory, Lyapunov stability theory and state feedback control technique, drive-response synchronization criteria of SCNMW have been obtained. Two kinds of exponential synchronization criteria are obtained, one is given with Lyapunov functions of vertex systems, and the other is shown with the coefficients of SCNMW. The obtained synchronization principles are closely related to the coupling strength of multiple sub-networks and the intensity of noise perturbation. Finally, a numerical example with some simulations is presented to illustrate the theoretical results.  相似文献   

17.
In this paper, by using Lyapunov functions, Razumikhin techniques and stochastic analysis approaches, the robust exponential stability of a class of uncertain impulsive stochastic neural networks with delayed impulses is investigated. The obtained results show that delayed impulses can make contribution to the stability of system. Compared with existing results on related problems, this work improves and complements ones from some works. Two examples are discussed to illustrate the effectiveness and the advantages of the results obtained.  相似文献   

18.
In this paper, the stability problem of discrete-time systems with time-varying delay is considered. Some new stability criteria are derived by using a switching technique. Compared with the Lyapunov–Krasovskii functional (LKF) approach, the method used in this paper has two features. First, a switched model, which is equivalent to the original system and contains more delay information, is introduced. It means that the criteria obtained by using the LKF method can be regarded as stability criteria for the switched system under arbitrary switching. Second, when the switching signal is known, the stability problem for the switched model under constrained switching is considered and piecewise LKFs are adopted to obtain stability criteria. Since constrained switching is less conservative than arbitrary switching if the switching signal is known, one can know that the obtained results in this paper are less conservative than some existing ones. Two examples are given to illustrate the effectiveness of the obtained results.  相似文献   

19.
In this paper, a method is proposed to reject disturbances in the model predictive control (MPC) strategy. In addition, uncertainties in the system parameters (i.e., internal disturbances) are considered as well. To achieve these goals, adaptive neural networks are designed as the predictor model and as the nonlinear disturbance observer, respectively. The disturbances are rejected via the optimization problem of the MPC. Stability of the closed-loop system is studied based on the Input-to-State Stability method. The proposed method is applied to the pH neutralization process and CSTR system and its effectiveness in optimal rejection of the disturbances and satisfying the system constrains is compared with the feed-forward control method.  相似文献   

20.
The exponential stabilization of BAM reaction-diffusion neural networks with mixed delays is discussed in this article. At first, a general pinning impulsive controller is introduced, in which the control functions are nonlinear and the pinning neurons are determined by reordering the state error. Next, based on the designed control protocol and the Lyapunov–Krasovskii functional approach, some novel and useful criteria, which depend on the diffusion coefficients and controlling parameters, are established to guarantee the global exponential stabilization of the considered neural networks. Finally, the effectiveness of the proposed control strategy is shown by two numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号