首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was to examine several physiological responses to a climbing-specific task to identify determinants of endurance in sport rock climbing. Finger strength and endurance of intermediate rock climbers (n = 11) and non-climbers (n = 9) were compared using climbing-specific apparatus. After maximum voluntary contraction (MVC) trials, two isometric endurance tests were performed at 40% (s = 2.5%) MVC until volitional exhaustion (continuous contractions and intermittent contractions of 10 s, with 3 s rest between contractions). Changes in muscle blood oxygenation and muscle blood volume were recorded in the flexor digitorum superficialis using near infra-red spectroscopy. Statistical significance was set at P < 0.05. Climbers had a higher mean MVC (climbers: 485 N, s = 65; non-climbers 375 N, s = 91) (P = 0.009). The group mean endurance test times were similar. The force-time integral, used as a measure of climbing-specific endurance, was greater for climbers in the intermittent test (climbers: 51,769 N x s, s = 12,229; non-climbers: 35,325 N x s, s = 9724) but not in the continuous test (climbers: 21,043 N x s, s = 4474; non-climbers: 15,816 N x s, s = 6263). Recovery of forearm oxygenation during rest phases (intermittent test) explained 41.1% of the variability in the force-time integral. Change in total haemoglobin was significantly greater in non-climbers (continuous test) than climbers (P = 0.023--40% test timepoint, P = 0.014--60% test timepoint). Pressor responses were similar between groups and not related to the force-time integral for either test. We conclude that muscle re-oxygenation during rest phases is a predictor of endurance performance.  相似文献   

2.
Abstract

The aim of the study was to examine several physiological responses to a climbing-specific task to identify determinants of endurance in sport rock climbing. Finger strength and endurance of intermediate rock climbers (n = 11) and non-climbers (n = 9) were compared using climbing-specific apparatus. After maximum voluntary contraction (MVC) trials, two isometric endurance tests were performed at 40% (s = 2.5%) MVC until volitional exhaustion (continuous contractions and intermittent contractions of 10 s, with 3 s rest between contractions). Changes in muscle blood oxygenation and muscle blood volume were recorded in the flexor digitorum superficialis using near infra-red spectroscopy. Statistical significance was set at P < 0.05. Climbers had a higher mean MVC (climbers: 485 N, s = 65; non-climbers 375 N, s = 91) (P = 0.009). The group mean endurance test times were similar. The force – time integral, used as a measure of climbing-specific endurance, was greater for climbers in the intermittent test (climbers: 51,769 N · s, s = 12,229; non-climbers: 35,325 N · s, s = 9724) but not in the continuous test (climbers: 21,043 N · s, s = 4474; non-climbers: 15,816 N · s, s = 6263). Recovery of forearm oxygenation during rest phases (intermittent test) explained 41.1% of the variability in the force – time integral. Change in total haemoglobin was significantly greater in non-climbers (continuous test) than climbers (P = 0.023 – 40% test timepoint, P = 0.014 – 60% test timepoint). Pressor responses were similar between groups and not related to the force – time integral for either test. We conclude that muscle re-oxygenation during rest phases is a predictor of endurance performance.  相似文献   

3.
Climbers often train on indoor climbing walls, which are modifiable to simulate features of outdoor climbing environments at different levels of difficulty. The aim of this study was to evaluate the influence of regularity of climbing holds on emergent perceptual-motor behaviours. Skilled climbers performed six repetitions of two topographically similar routes on an indoor climbing wall. One route was composed of 18 different types of hand holds (irregular route), whereas the other route had only two types of hand holds (regular route). Preview and climbing durations, as well as visual search behaviours, were recorded. Participants rated the regular route as more difficult to climb, requiring greater perceived effort to complete. The time spent previewing, and then climbing the routes, was reduced on average by 12% and 16%, respectively in the irregular route compared to the regular route. There were more fixations made when climbing the regular route (281 vs. 222 fixations per trial). It seems the climbers were more careful and thorough in their gaze behaviours with the regular route because of the additional technical demands it presented, whereas the irregular route afforded a more superficial visual exploration with use of more frequent saccades between holds. The findings suggest how irregularity in the environment is exploited by skilled climbers, apparently making the practice context easier to perceive and act in.  相似文献   

4.
5.
The aim of this study was to examine the effect of alterations in potential lead fall distance on the hormonal responses of rock climbers. Nine advanced female climbers completed two routes while clipping all (PRO-all) or half (PRO-½) of the fixed points of protection. Venous blood samples were analysed for total catecholamines, noradrenaline (norepinephrine), adrenaline (epinephrine), dopamine, lactate, cortisol and serotonin. Differences between the two conditions pre, immediately post and 15 min post climbing were assessed using a 2 × 3 repeated measures ANOVA. All hormones and blood lactate concentrations increased significantly (P < 0.05) immediately post climb, except for cortisol. Peak cortisol concentrations did not occur until 15 min post ascent. Further, significant interactions between climbing and clipping conditions were found for total catecholamines (890% of basal concentration in PRO-½ vs. 568% in PRO-all), noradrenaline (794% vs. 532%) and dopamine (500% vs. 210%). There were no significant interactions for adrenaline (1920% vs. 1045%), serotonin (150% vs. 127%) or lactate (329% vs. 279%). The study showed a greater catecholamine response with an increase in potential lead fall distance. The most pronounced increases seen in catecholamine concentration were reported for dopamine and noradrenaline.  相似文献   

6.
An increase in the period over which a muscle generates force can lead to the generation of greater force and, therefore, for example in jumping, to greater jump height. The aim of this study was to examine the effect of squat depth on maximum vertical jump performance. We hypothesized that jump height would increase with increasing depth of squat due to the greater time available for the generation of muscular force. Ten participants performed jumps from preferred and deep squat positions. A computer model simulated jumps from the different starting postures. The participants showed no difference in jump height in jumps from deep and preferred positions. Simulated jumps produced similar kinematics to the participants' jumps. The optimal squat depth for the simulated jumps was the lowest position the model was able to jump from. Because jumping from a deep squat is rarely practised, it is unlikely that these jumps were optimally coordinated by the participants. Differences in experimental vertical ground reaction force patterns also suggest that jumps from a deep squat are not optimally coordinated. These results suggest there is the potential for athletes to increase jump performance by exploiting a greater range of motion.  相似文献   

7.
Abstract

An increase in the period over which a muscle generates force can lead to the generation of greater force and, therefore, for example in jumping, to greater jump height. The aim of this study was to examine the effect of squat depth on maximum vertical jump performance. We hypothesized that jump height would increase with increasing depth of squat due to the greater time available for the generation of muscular force. Ten participants performed jumps from preferred and deep squat positions. A computer model simulated jumps from the different starting postures. The participants showed no difference in jump height in jumps from deep and preferred positions. Simulated jumps produced similar kinematics to the participants' jumps. The optimal squat depth for the simulated jumps was the lowest position the model was able to jump from. Because jumping from a deep squat is rarely practised, it is unlikely that these jumps were optimally coordinated by the participants. Differences in experimental vertical ground reaction force patterns also suggest that jumps from a deep squat are not optimally coordinated. These results suggest there is the potential for athletes to increase jump performance by exploiting a greater range of motion.  相似文献   

8.
采用文献资料法、专家访谈法、问卷调查法,对江西省攀岩运动的现状与发展策略进行研究,结果表明:江西省青少年攀岩推广缓慢;与旅游结合的发展试点较少,开发规模也较小,未能形成项目品牌;进入商场体验推广困难;在户外拓展训练项目中推广前景较大.建议加强市场竞争管理,学习国内成功市场化运作经验,打造江西攀岩运动特色品牌,加强社会性合作.  相似文献   

9.
The purpose of the investigation was to study the relationship between thrust phase duration, ground reaction force, velocity increase after pole thrust and pole angles versus pole length during double poling in roller skiing. Seven male regional elite cross-country skiers volunteered as subjects for the study. The subjects performed a maximal double pole thrust on roller skis with each of the three different pole lengths: 'short', self-selected (normal) and 'long'. The short and long poles were 7.5 cm shorter and 7.5 cm longer than the self-selected pole length. The subjects made seven maximal pole thrusts with each pole length, which were randomly selected during 21 trials. For each trial the subjects accelerated from a 1.2 m high downhill slope attaining a speed of 3.92 m.s-1 before making a maximal double pole thrust on a force plate placed at the bottom of the slope. The vertical (F2), anterior-posterior (Fy) and mediolateral (Fx) reaction forces of the left pole were measured by the force plate. The positions of the pole were recorded in 3-D by an opto-electronic system. Thrust phase duration, impulse, mean force, velocity increase after pole thrust and pole angles were calculated from the recorded data. Double poling with long poles produced a significantly larger propulsive anterior-posterior reaction force impulse and velocity increase than normal (p < .05) and short poles (p < .05). This was in spite of a larger mean anterior-posterior reaction force being produced with short poles. Thus, thrust phase duration was a primary factor in determining propulsive anterior-posterior impulse. For the practitioner, the results can be useful in the selection of pole length when the aim is to increase thrust phase duration, anterior-posterior force impulse and velocity.  相似文献   

10.
Magnesium carbonate, or 'chalk', is used by rock climbers to dry their hands to increase the coefficient of friction, thereby improving the grip of the holds. To date, no scientific research supports this practice; indeed, some evidence suggests that magnesium carbonate could decrease the coefficient of friction. Fifteen participants were asked to apply a force with the tip of their fingers to hold a flattened rock (normal force), while a tangential force pulled the rock away. The coefficient of friction--that is, the ratio between the tangential force (pulling the rock) and the normal force (applied by the participants)--was calculated. Coating (chalk vs no chalk), dampness (water vs no water) and rock (sandstone, granite and slate) were manipulated. The results showed that chalk decreased the coefficient of friction. Sandstone was found to be less slippery than granite and slate. Finally, water had no significant effect on the coefficient of friction. The counter-intuitive effect of chalk appears to be caused by two independent factors. First, magnesium carbonate dries the skin, decreasing its compliance and hence reducing the coefficient of friction. Secondly, magnesium carbonate creates a slippery granular layer. We conclude that, to improve the coefficient of friction in rock climbing, an effort should be made to remove all particles of chalk; alternative methods for drying the fingers are preferable.  相似文献   

11.
12.
根据实际情况,阐述了我国攀岩运动后备人才培养的新模式,旨在为攀岩运动在我国更好的发展提供参考。  相似文献   

13.
Abstract

Currently, direct empirical evidence exists about the amount of mechanical load that climbers apply to each finger during several hand grips specific to sport climbing, but not yet in a specific hanging position.

The objectives of this study are a) to draw and build a solid and rigid support that simulates the real action of a hand grip in a hanging position in sport climbing, to enable the measurement of the mechanical load endured by the fingers in a hanging position and in addition, b) to describe the distribution of mechanical load among fingers as a function of the level of climbing during different hand grips in a hanging position.

Thirty young male participants took part in the initial phase of reliability of the measurements, while another 64 male climbers participated in the subsequent study phase to check the relations between independent and dependent variables. The level of on sight climbing and the total practice experience were used to define the groups. The research task consisted of performing hanging positions on the created support in order to measure the mechanical load endured by the fingers in the three most characteristic hand grips in climbing (crimp, half crimp and slope). It has been concluded that the performance level of the climbers had no influence on the production of a pattern of differentiated finger mechanical load during the research task.  相似文献   

14.
This study investigated changes in performance and technique that occur during maximal effort bend sprinting compared with straight-line sprinting under typical outdoor track conditions. Utilising a repeated measures design, three-dimensional video analysis was conducted on seven male sprinters in both conditions (bend radius: 37.72 m). Mean race velocity decreased from 9.86 to 9.39 m/s for the left step (p = 0.008) and from 9.80 to 9.33 m/s for the right step (p = 0.004) on the bend compared with the straight, a 4.7% decrease for both steps. This was mainly due to a 0.11 Hz (p = 0.022) decrease in step frequency for the left step and a 0.10 m (p = 0.005) reduction in race step length for the right step. The left hip was 4.0° (p = 0.049) more adducted at touchdown on the bend than the straight. Furthermore, the bend elicited significant differences between left and right steps in a number of variables including ground contact time, touchdown distance and hip flexion/extension and abduction/adduction angles. The results indicate that the roles of the left and right steps may be functionally different during bend sprinting. This specificity should be considered when designing training programmes.  相似文献   

15.
16.
In this study, we investigated a new method of training for maximal strength and flexibility, which included exertion with superimposed vibration (vibratory stimulation, VS) on target muscles. Twenty‐eight male athletes were divided into three groups, and trained three times a week for 3 weeks in one of the following conditions: (A) conventional exercises for strength of the arms and VS stretching exercises for the legs; (B) VS strength exercises for the arms and conventional stretching exercises for the legs; (C) irrelevant training (control group). The vibration was applied at 44 Hz while its amplitude was 3 mm. The effect of training was evaluated by means of isotonic maximal force, heel‐to‐heel length in the two‐leg split across, and flex‐and‐reach test for body flexion. The VS strength training yielded an average increase in isotonic maximal strength of 49.8%, compared with an average gain of 16% with conventional training, while no gain was observed for the control group. The VS flexibility training resulted in an average gain in the legs split of 14.5 cm compared with 4.1 cm for the conventional training and 2 cm for the control groups, respectively. The ANOVA revealed significant pre‐post training effects and an interaction between pre‐post training and ‘treatment’ effects (P< 0.001) for the isotonic maximal force and both flexibility tests. It was concluded that superimposed vibrations applied for short periods allow for increased gains in maximal strength and flexibility.  相似文献   

17.
This study aimed to (1) evaluate the effect of hand shaking during recovery phases of intermittent testing on the time–force characteristics of performance and muscle oxygenation, and (2) assess inter-individual variability in the time to achieve the target force during intermittent testing in rock climbers. Twenty-two participants undertook three finger flexor endurance tests at 60% of their maximal voluntary contraction until failure. Performances of a sustained contraction and two intermittent contractions, each with different recovery strategies, were analysed by time–force parameters and near-infrared spectroscopy. Recovery with shaking of the forearm beside the body led to a significantly greater intermittent test time (↑ 22%, P?P?P?相似文献   

18.
In the finishing kick of a distance race, maximizing speed becomes the focus even if economy may be sacrificed. If distance runners knew how to alter their technique to become more sprint-like, this process could be more successful. In this study, we compared the differences in technique between sprinters and distance runners while running at equal and maximal speeds. Athletes consisted of 10 Division I distance runners, 10 Division I sprinters, and 10 healthy non-runners. They performed two tests, each consisting of a 60-m run on the track: Test 1 at a set pace of 5.81 m/s, while Test 2 was maximal speed. Video was collected at 180 Hz. Significant differences (P < 0.05) between the sprint and distance groups at maximal speeds were found in the following areas: speed, minimum hip angle, knee extension at toe-off, stride length, contact time, and recovery knee at touchdown. In Test 1, sprinters and distance runners displayed many of the same significant differences. The control group was similar to the distance group in both trials. As distance runners attempt to sprint, the desired adjustments do not necessarily occur. Distance runners may benefit from biomechanical interventions to improve running speed near the end of a race.  相似文献   

19.
In the finishing kick of a distance race, maximizing speed becomes the focus even if economy may be sacrificed. If distance runners knew how to alter their technique to become more sprint-like, this process could be more successful. In this study, we compared the differences in technique between sprinters and distance runners while running at equal and maximal speeds. Athletes consisted of 10 Division I distance runners, 10 Division I sprinters, and 10 healthy non-runners. They performed two tests, each consisting of a 60-m run on the track: Test 1 at a set pace of 5.81 m/s, while Test 2 was maximal speed. Video was collected at 180 Hz. Significant differences (P < 0.05) between the sprint and distance groups at maximal speeds were found in the following areas: speed, minimum hip angle, knee extension at toe-off, stride length, contact time, and recovery knee at touchdown. In Test 1, sprinters and distance runners displayed many of the same significant differences. The control group was similar to the distance group in both trials. As distance runners attempt to sprint, the desired adjustments do not necessarily occur. Distance runners may benefit from biomechanical interventions to improve running speed near the end of a race.  相似文献   

20.
运用比较法和问卷法对华南理工大学2003、2004级部分学生体育课开设钓鱼、攀岩合并课进行探讨发现,高校体育课中开设钓鱼、攀岩合并课能很好地培养学生耐性和提高学生体质,且学生对该课程的兴趣度极高;同时还分析了高校开设垂钓、攀岩合并课在场地设施、师资力量等方面具有较好条件,并提出高校体育课应开展垂钓、攀岩课,以丰富和满足学生对多种体育项目的追求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号