首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
三角形中位线定理说明了三角形的中位线与第三边的位置关系和数量关系.利用这两种关系,可证明若于与线段中点有关的问题.例1 如图1,△ABC中,BD平分∠ABC,AD⊥BD于D,E为Ac的中点.求证:DE//BC.分析由E为AC的中点,若延长AD交BC于F,那么要证DE//BC,则只要证D为AF的中点.这只要证△BDA≌△BDF.∵AD⊥BD,∴∠BDA=∠BDF=90°.∵∠1=∠2,BD=BD,∴∠BDA≌△BDF.  相似文献   

2.
一、将四边形问题转化为平行四边形问题例 1.已知 :四边形 ABCD中 ,AB=DC,AC=BD,且 AD≠BC。求证 :四边形 ABCD是等腰梯形。分析 :欲证此四边形为等腰梯形 ,可由定义来证明。从已知条件可看出 ,只要证明AD∥ BC即可。由此联想到构造平行四边形即可证得。证明 :过点 D作 DE∥ A B交BC于点 E,则∠ ABC=∠ DEC。∵ AB=DC,AC=DB,BC=CB,∴△ ABC≌△ DCB。∴∠ ABC=∠ DCB,∠ DEC=∠ DCB。∴ AB=DC=DE,∵ AB∥ DE,∴四边形 ABED是平行四边形 ,∴ AD∥ BC。又∵ AD≠ BC,∴四边形 ABCD是等腰梯形。二、将四…  相似文献   

3.
中位线定理是三角形一个重要定理·有一个特点,在同一个题设下有两个结论:一个结论是表明两条线段的位置关系(平行),另一个结论是表明两条线段的数量关系(一半)·在应用这个定理时,不一定同时需要两个结论,有时需要平行,有时需要倍分关系·可以根据具体情况,按需选用·现举例说明中位线定理的运用·一例、1用于在证△明A平BC行中,BD平分∠ABC,AD⊥BD,垂足为D,AE=EC·求证:DE∥BC·证明:延长AD交BC于F,因为BD平分∠ABC,所以∠ABD=∠CBD·因为AD⊥BD,所以∠BDA=∠BDF=90°又BD=BD,所以△BDA≌△BDF(ASA),所以AD=DF…  相似文献   

4.
补形解证题     
例1已知:AO是△ABC的∠A的平分线,BD垂直于AO的延长线,D是垂足.E是BC中点. 求证:DE=1/2(AB-AC). 略证:延长AC交BD的延长线于F.∵AD平分∠BAF,AD上BD,∴D为BF的中点,由E是BC中的点,得-AC=AB-AC,∴DE=1/2(AB—AC).  相似文献   

5.
巧添辅助圆     
许多几何问题,若能恰当添出辅助圆,充分利用圆的丰富性质,便能获得简捷巧妙的解法. 例1 在△ABC中,∠ABC=∠C,∠A=100°,BE是∠B平分线,求证:AE+BE=BC.图1证明 作△ABE的外接圆交BC于D,连结ED.∵∠A=100°,AB=AC,∴∠ABC=∠C=40°.又∵BE平分∠ABC,∴∠EBD=20°,AE=DE,∴AE=DE.又∵四边形ABDE为圆内接四边形,∴∠DEC=∠ABC=40°,∴∠DEC=∠C.∴DE=DC,∴AE=CD.∵∠BDE+∠A=180°,∠A=100°,∴∠BDE=80°,∴∠BED=80°,∴BE=BD,∴BC=BE+AE. 例2 已知等腰梯形ABCD中,AD∥BC.AD=a,BC=b,AB=CD=…  相似文献   

6.
角平分线是指把一个角分成两个相等的角的射线.关于角平分线具有如下重要的性质:角平分线上的点到角的两边的距离相等.对于一些含角平分线条件的证明问题,巧用这个性质,能简化解题过程,达到事半功倍的效果例1如图,△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F,求证:EB=FC.证明:∵AD平分∠BAC,又DE⊥AB于E,DF⊥AC于F,∴DE=DF.在△BDE和△CDF中,∵∠DEB=90°,∠DFC=90°,DE=DF,BD=CD,∴Rt△BDE≌Rt△CDF(HL).∴EB=FC例2如图,△ABC中,O为∠A、∠B平分线的交点,OD⊥BC于D,OE⊥…  相似文献   

7.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

8.
中点是几何图形中的特殊点,与中点有关的线段有三角形的中线、中位线、梯形的中位线等.利用中点很容易构造全等三角形、等腰三角形.在解题中,若能灵活运用它的相关性质,可使许多问题得到迅速解决.一、由中点联想三角形的中线例1如图1,△ABC中BD和CE是高,M为BC中点,P为DE的中点.求证:PM⊥DE.分析:由∠BDC=∠BEC=90°,M为BC中点,可得MD=ME=12BC,故△MDE为等腰三角形.又P为DE中点,根据等腰三角形底边上的中线也是底边上的高即可得证.二、由中点联想中位线例2如图2,梯形ABCD中,AD∥BC,AD相似文献   

9.
一些几何问题中常常出现有关角平分线的条件 ,能否恰当利用角平分线巧作辅助线 ,往往成为解题的关键 .下面举例说明如何利用角平分线作辅助线 .一、过角平分线上的一点作一边的平行线构造等腰三角形 .例 1 如图 1 ,在 ABC中 ,∠B、∠C的平分线交于I ,过I点平行于BC的直线分别交AB、AC于D和E .求证 :DE =BD +EC .证明 ∵BI平分∠ABC ,∴∠ABI=∠IBC .又∵DE∥BC ,∴∠DIB =∠IBC ,∴∠DBI =∠DIB ,∴DI=DB .同理 :EI=EC ,∴DE =DB+EC .评注 本题根据角平分线的定义 ,过其上一点作角的一边的平行线 ,则又根据平…  相似文献   

10.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

11.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

12.
在平时的学习中,同学们如能对课本上的习题认真思考,归纳总结,就能够开阔解题的思路,在解题中举一反三.本文以《梯形》中的一道习题为例,加以说明.题目(人教版《几何》第二册第189页第2题)如图1,在梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,EF分别交BD、AC于G、H.求证GH=12(BC-AD).证明:∵AE=EB,DF=FC,∴EF∥AD∥BC.∴AH=HC,BG=GD.∴FH=12AD,FG=12BC,GH=FG-FH=12(BC-AD).我们已经学习了梯形的中位线定理:连结梯形两腰中点的线段平行于两底,并且等于两底和的一半.仿照中位线定理,对上面的题目略加改变,就可以得…  相似文献   

13.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

14.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

15.
三角形中位线定理是一个很重要的定理,用它来证明多中点问题,经常要用“取中点,连中点得中位线”的方法,但在何处取中点呢?这个问题需要认真地研究.请看下面的例题.例1如图1,在△ABC中,点D、E分别在AB、AC上,且DB=EC,M、N分别为BE、CD的中点,直线MN交AB于P点,交AC于Q点,求证:AP=AQ.证明:取BC的中点F,连MF、NF,则NF∥DB,MF∥EC,且NF=12DB,MF=12EC.因为DB=EC,所以MF=NF,∠1=∠2.又因为∠1=∠4,∠2=∠3,所以∠3=∠4,所以AP=AQ.说明:证明过程简明易懂.但是有不少同学可能会问:为什么会想到要取BC的中点呢?这是因为D…  相似文献   

16.
与角平分线有关的几何问题在各类考试(竞赛和中考)中屡见不鲜,解决这类问题时,若能通过巧添辅助线构造全等三角形常可使问题化难为易.例1如图,在△ABC中,∠BAC的平分线交BC于D,AC=AB BD,∠C=30°,则∠ABC的度数是(江苏省初中数学竞赛题)()A.45°B.60°C.75°D.90°解:延长AB到E,使AE=AC,连接DE,∵∠1=∠2,AD=AD,∴△AED≌△ACD(SAS).∴∠E=∠C=30°.又AE=AB BE,AC=AB BD,∴BE=BD.从而∠3=∠E.∴∠ABC=2∠E=60°.故选:B.反思:若在AC上截取AF=AB,同学们考虑怎样证明?例2如图,已知在△ABC中,AB>AC,AD为∠A的…  相似文献   

17.
例1已知:四边形ABCD中,对角线AC与BD交于点O,AC=BD,M、N分别是AB、CD的中点,MN交BD、AC分别于点E、F求证:OE=OF.分析:如图1,要证OE=OF,只要证∠OEF=∠OFE,即可.取AD中点G,连接MG、NG,则有MG∥BD,NG∥AC,从而有∠OEF=∠GMN,∠OFE=∠GNM,又MG=12BD,NG=21AC,而AC=BD,故有MG=NG,从而有∠GMN=∠GNM,故可得∠OEF=∠OFE.例2如图2,△ABC中,∠ACB=2∠B,AD⊥BC于点D,M是BC的中点,求证:MD=21AC.分析:取AB中点N,连出△ABC的中位线MN,则有MN=21AC,所以只要证MD=MN即可,连接ND,则ND=21AB=BN,从而…  相似文献   

18.
三角形的角平分线在初中几何中占有重要的地位,其应用也十分广泛,为使同学们更好地掌握它,现作如下归纳. 一、角平分线+平行→等腰三角形例1 如图1,△ABC中,BE平分∠ABC,DE∥BC,求证:BD=DE 深化探究:如图2,若△ABC中,∠ABC、∠ACB的平分线交于O点,过O作DE∥BC.  相似文献   

19.
有些平面几何 ,本身虽然与面积无关 .若从面积的角度来考虑 ,往往具有思路明快 ,过程简捷 ,现举例如下 .一、用面积证明线段相等例 1 如图 1,在△ A BC中 ,BE⊥ AC于 E,CF⊥AB于 F,且 BE =CF,求证 :AB =A C.证明 :在△ A BC中 ,由三角形面积公式 ,得S△ ABC=12 A B .CF =12 A C .BE∵ BE =CF,∴ AB =AC.图 1图 2二、用面积法证明线段不等例 2 如图 2 ,在△ A BC中 ,BC >A C,AD⊥ BC于D,BE⊥ AC于 E,求证 :BE >A D.证明 :∵ S△ ABC =12 BE .A C =12 AD .BC,∴ BEA O=BCA C,又∵ BC >AC,∴ BE >AD .…  相似文献   

20.
一、利用全等三角形的性质证明例1 已知:如图1,D、E在线段BC上,AD=AE,BD=CE.求证:∠B=∠C.证明:∵AD=AE,∴∠1=∠2,∴∠ADB=∠AEC在△ABD和△ACE中,BD=CE,∠ADB=∠AEC,AD=AE,∴△ABD≌△ACE(SAS).∴∠B=∠C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号