首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在向量学习过程中,关于线段的定比分点公式有两种形式,一种是坐标形式,另一种是向量形式.由于向量形式在应用时更具有整体性和便捷性等特点,其应用十分广泛.下面举例说明这一公式的应用. 一、定比分点公式的向量形式及思考1.定理的推导及变式定理1 若A,B,C三点共线,且AC=  相似文献   

2.
定比分点的向量式:图1如图1,一般地,若P是分线段P1P2成定比λ的分点(即P1P=λPP2,λ≠-1)则OP=1 1λOP1 1 λλOP2.证明:设O为平面上任意一点,若P1P=λPP2.则OP-OP1=λ(OP2-OP)=λOP2-λOP∴(1 λ)OP=OP1 λOP2即OP=1 1λOP1 1 λλOP2.特别地,当λ=1时,点P是线段P1P2的中点,则OP=21(OP1 OP2)称为线段P1P2中点P的向量表达式.变式:一般地,若P、P1、P2三点共线,且P1P=nmPP2,O为任意一点,则OP=nOP1m mnOP2图2应用例析:一、探求点的坐标【例1】如图2,△ABC顶点A(1,1),B(-2,10),C(3,7),∠BAC平分线交BC边于D,求…  相似文献   

3.
<正>本文剖析一类隐含圆的动点问题,供同学们学习参考.一、动点问题中可构建圆的基本结论1."定线定角"隐藏着外接圆如图1,已知线段AB=4,点C是直线AB上方的一个动点,∠ACB=30°,动点C的路径是什么?想一想:在直线AB上方找这样的点C,能找到多少个?把这些点连起来成的图形是怎样的图形?通过思考可知,在直线AB上方可以找到无数个点C,把这些点连结起来是一条圆弧.再想一想:如何画出弧所在的圆?  相似文献   

4.
三点共线向量式的巧妙运用   总被引:1,自引:0,他引:1  
三点共线向量式:P是平面OAB(O∈AB)上的一个动点,OP→=xOA→+YOB→(x、y∈R),若P、A、B三点共线,则x+y=1;反之.若x+y=1,则P、A、B三点共线.  相似文献   

5.
动点轨迹问题对于初中生来说既是重点也是难点.文章归纳出初中常见的两大类动点轨迹类型——圆弧型和直线型.列举具体实例对学生比较困惑的两种动点轨迹问题(即"定边对定角"的动点轨迹和动点与定点的连线与定直线的夹角为定角的动点轨迹)进行分析讲解:题目中如能找到定边对定角,则该动点的运动轨迹为在以定边为弦且经过定点的圆弧上,这一类型关键的突破口是求出定边对面角的具体度数,为定值.而题目中如出现动点与定点的连线与定直线的夹角为定角时,则该动点的轨迹为直线型(这个夹角的另一边),解决这一类型的方法为夹角定位法.  相似文献   

6.
<正>引子近期拜读文[1],谈到用"两次相似的视角"求解动点路径问题,引发笔者思考,也查阅了文中提到的文[2]用"位似旋转变换"求解动点路径问题.有关动点路径问题的确是当下中考热点与难点,对文[1]中的思考与探索,笔者大多赞同,但在实际教学中仍遇到了一些困惑:1.笔者所教的对象对文[1]的思路仍感到吃力; 2.师生对"三点共线则轨迹为直线"表示了怀疑.  相似文献   

7.
正初中阶段,线段和、差的最值问题是一个难点.求解这类问题,关键的在于找出两个"量":一是定点,二是动点或不定点所在的定直线;进而利用"两点之间线段最短"或三角形的三边关系来解决.1求和1.1两定点+一定直线例1(牛饮水问题)牧童在A处放牛,他的家在B处,l为河流所在直线,晚上回家前要先带牛到河边饮水,饮水地点选在何处,牧童所走路程最短.题中定点是A,B两点,饮水点记为P,则P为  相似文献   

8.
<正>一、向量问题中的三点共线结论应用向量的定比分点公式与平面向量唯一分解定理,不难证明关于三点共线的如下结论:结论设■是平面内两个不共线的向量,则三点A、B、P共线的充要条件是存在唯一的实数λ和μ,使得■,且λ+μ=1.这个结论经常用在涉及向量试题中的最值(取值范围)问题.在实际解题过程中,当题目中没有明显的预示可以使用该结论时,需要我们善于挖掘题目隐含的条件,观察图形,构造出满足使用该结论的条件,这是运用该结论的一  相似文献   

9.
动点路径长问题是近年来中考的热点,动点所经过的路径,常见的有线段和圆弧,这类试题能全面考查数学活动过程,考查通过数学思考解决问题的综合应用能力,因而倍受各地中考命题者的青睐.由于动点所经过的路径(线)长不明晰,它对分析问题的能力要求更高,本文拟通过几道中考试题加以解析,从中体会这类试题的特点.1动点旋转过程中所经过的路径长为圆弧图1例1(2012年贵州遵义)如图1,将边长为槡2cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动6次后,正方形的中心O经过的路线长是cm.  相似文献   

10.
最值问题是近几年中考的热点与难点之一,尤其是一类线段的最值问题备受命题人青睐.这类线段有以下特点:线段的一个端点为定点,另一个端点为动点.解决此类问题的关键是构建动点的轨迹(直线型、曲线型),下面举例说明.1动点轨迹是直线型当动点在线段、射线、直线上运动时,则称动点轨迹为直线型,这样的动点主要有三类:定线定距离、定线定夹角、定点等距离.此时可将“点点距离”转化为“点线距离”,利用“垂线段最短”求解最值.  相似文献   

11.
正结论1 P是平面OAB(OAB)上的一个动点,→OP=→x OA+→y OB(x,y∈R),若点P,A,B共线,则x+y=1;反之,若x+y=1,则点P,A,B共线.结论 1可作进一步推广:结论 2若点P与O落在直线AB的2侧,则有x+y1,反之也成立.证明设OP与AB所在的直线交于点P',则存在实数λ,使得→OP=λ→OP'且λ1.由上述定理  相似文献   

12.
线段的定比分点公式是中学教材中的传统内容,在新教材中这一内容安排在向量一章中,通过向量共线的充要条件来证明的.这就启示我们有关线段定比分点的问题也可以直接用向量来做.下面通过几个例子来说明.  相似文献   

13.
1 知识探究 1) 线段的定比分点 设P1与P2是直线l上的两点,点P为直线l上不同于P1、P2的任意一点,若存在一个实数λ,使得→P1P=λ→PP2,则λ叫做P分有向线段→P1P2所成的比,P点叫做有向线段→P1P2的定比分点.  相似文献   

14.
三角形重心定理:三角形三条中线相交于一点(称三角形的重心).这个点到每个顶点的距离等于到这顶点对边中点的距离的二倍.”我们分别运用三角形中位线性质、平行四边形的性质、相似形的性质,直线方程,点共线的条件,线共点的条件,线段定比分点及塞瓦(ceva)定理等有关知识来分类介绍它的十二种证法。思路一:先找出两条中线的交  相似文献   

15.
证明几何题 ,我们一般常采用综合分析法 ,这确是行之有效的重要方法 ,但在证明过程中有时却过于复杂 ,不易理解 .而用解析法来证明就可以简化证明 ,且思路清晰易于理解 .下面利用线段的定比分点公式来解决一些几何题目 .线段定比分点公式 :用点的径向量表示 :对于有向线段P1P2 (P1≠P2 ) ,如果点P满足P1P=λ·PP2 (λ≠ -1 ) ,则称点P是把有向线段P1P2 分成定比为λ的分点 ,O是空间任意一点 ,则OP =OP1+λOP21 +λ .例 1 如图 1 ,设△ABC的三个顶点为A、B、C ,同一平面上有一点P ,今取Q、R、S ,使PC∶CQ …  相似文献   

16.
“共线法”求线段和最值,即利用“两点之间,线段最短”定理来构建共线模型,由共线原理求线段和最值的一种思路.具体求解时需要关注问题中的动点及轨迹,利用“共线法”来确定最值情形.本文结合实例探究“共线法”求线段和最值.  相似文献   

17.
三、定比分点向量公式的潜在作用由P1、P2、P3三点共线(P1P=λPP2)可得定比分点向量公式OP=OP1 λOP21 λ.反过来,如果OP=OP1 λOP21 λ,则可证三点P1、P、P2共线.事实上,由OP=OP1 λOP21 λ得(1 λ)OP=OP1 λOP2,OP-OP1=λ(OP2-OP)即P1P=λPP2所以三点P1、P、P2共线从而有三点  相似文献   

18.
正平面中有关三点共线的一个重要的定理:定理1:设OA,OB为平面内不共线的两个向量,且OC=xOA+yOB(x,y∈R),则A,B,C共线的充要条件是x+y=1.文[1]探究了以上定理中将"x+y=1"中右边的"1"一般化后动点C的轨迹问题,得到了如下的结论:定理2:设O,A,B为平面α内不共线三点,OC=xOA+yOB(x,y∈R),过O与直线AB平行的直线为ι0,则满足x+y=k(k∈R)的动点C的轨迹是一条平行(重合)于ι0  相似文献   

19.
命题 1 [1]  平面上给定n(n >3)个点 ,其中任何三点不共线 .任意地用线段连结某些点 (这些线段称为边 ) ,得到x条边 .若确保图形中出现以给定点为顶点的三角形 ,求证 :x≥n(n - 1 ) (n - 2 ) 33(n - 2 ) .笔者认为 ,x≥n(n - 1 ) (n - 2 ) 33(n - 2 ) 是充分不必要条件 ,并发现如下命题 .命题 2 平面上给定n(n≥3)个点 ,其中任何三点不共线 .任意地用线段连结某些点 (这些线段称为边 ) ,得到x条边 .图形中出现以给定点为顶点的三角形的充要条件是x≥ n2 n - n2 1 ,其中 ,[x]表示不超过x的最大整数 .证明 :设平面上给定的n个点分别为…  相似文献   

20.
点共线问题是初等几何中常见的,也是饶有兴味的问题,但在证明中往往使人感到棘手,本文用向量的方法来证明之. 一、用共线向量的定义新教科书第一册(下)第5.1节告诉我们,共线向量就是平行向量,因此,若能证得过同一点的两向量平行,如AB∥BC,则三点A、B、C共线.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号