首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments show that particles smaller than the throat size of converging-diverging microchannels can sometimes be trapped near the throat. This critical phenomenon is associated with the negative dc dielectrophoresis arising from nonuniform electric fields in the microchannels. A finite-element model, accounting for the particle-fluid-electric field interactions, is employed to investigate the conditions for this dielectrophoretic (DEP) choking in a converging-diverging microchannel for the first time. It is shown quantitatively that the DEP choking occurs for high nonuniformity of electric fields, high ratio of particle size to throat size, and high ratio of particle’s zeta potential to that of microchannel.  相似文献   

2.
Particle separation is important to many chemical and biomedical applications. Magnetic field-induced particle separation is simple, cheap, and free of fluid heating issues that accompany electric, acoustic, and optical methods. We develop herein a novel microfluidic approach to continuous sheath-free magnetic separation of particles. This approach exploits the negative or positive magnetophoretic deflection to focus and separate particles in the two branches of a U-shaped microchannel, respectively. It is applicable to both magnetic and diamagnetic particle separations, and is demonstrated through the sorting of 5 μm and 15 μm polystyrene particles suspended in a dilute ferrofluid.  相似文献   

3.
Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.  相似文献   

4.
This paper presents a mathematical model for laser-induced rapid electro-kinetic patterning (REP) to elucidate the mechanism for concentrating particles in a microchannel non-destructively and non-invasively. COMSOL®(v4.2a) multiphysics software was used to examine the effect of a variety of parameters on the focusing performance of the REP. A mathematical model of the REP was developed based on the AC electrothermal flow (ACET) equations, the dielectrophoresis (DEP) equation, the energy balance equation, the Navier-Stokes equation, and the concentration-distribution equation. The medium was assumed to be a diluted solute, and different electric potentials and laser illumination were applied to the desired place. Gold (Au) electrodes were used at the top and bottom of a microchannel. For model validation, the simulation results were compared with the experimental data. The results revealed the formation of a toroidal microvortex via the ACET effect, which was generated due to laser illumination and joule-heating in the area of interest. In addition, under some conditions, such as the frequency of AC, the DEP velocity, and the particle size, the ACET force enhances and compresses resulting in the concentration of particles. The conditions of the DEP velocity and the ACET velocity are presented in detail with a comparison of the experimental results.  相似文献   

5.
Electrophoresis plays an important role in many applications, which, however, has so far been extensively studied in Newtonian fluids only. This work presents the first experimental investigation of particle electrophoresis in viscoelastic polyethylene oxide (PEO) solutions through a microchannel constriction under pure DC electric fields. An oscillatory particle motion is observed in the constriction region, which is distinctly different from the particle behavior in a polymer-free Newtonian fluid. This stream-wise particle oscillation continues until a sufficient number of particles form a chain to pass through the constriction completely. It is speculated that such an unexpected particle oscillating phenomenon is a consequence of the competition between electrokinetic force and viscoelastic force induced in the constriction. The electric field magnitude, particle size, and PEO concentration are all found to positively affect this viscoelasticity-related particle oscillation due to their respective influences on the two forces.  相似文献   

6.
We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally applied magnetic fields. We demonstrate the controlled transportation of a large population of particles over several millimeters of distance as well as the spatial separation of two populations of magnetic particles with different magnetophoretic mobilities. The technique can be used for the controlled selective manipulation and separation of magnetically labelled species.  相似文献   

7.
Catalytic Janus particles rely on chemical decomposition to self-propel and have displayed enormous potential for targeted drug delivery and cellular penetration. Catalytic propulsion mechanisms are limiting, however, with fuel requirements and specialized fluid properties being necessary to achieve propulsion. We have improved the dynamic propulsion of catalytic Janus particles by functionalizing flagellar filaments to one of their hemispheres. Flagellated Janus particles, torqued by rotating magnetic fields, swim along their rotation axis using the explicit chirality and flexibility of flagella, mimicking flagellar rotation of live bacteria. Depending on the working fluid, flagellated Janus particles can propel using either catalytic or swimming propulsion. We demonstrate experimentally that flagellated Janus particles behave predictably under the two actuation modes and can precisely follow trajectories under closed-loop feedback control. Flagellated Janus particles were demonstrated to swim in both Newtonian and shear-thickening fluids. These are the first Janus particles developed that can be propelled interchangeably between catalytic and flagellar swimming propulsion, allowing two distinct propulsion mechanisms for future use within in vivo operations.  相似文献   

8.
We present a microfluidic platform able to trap single GUVs in parallel. GUVs are used as model membranes across many fields of biophysics including lipid rafts, membrane fusion, and nanotubes. While their creation is relatively facile, handling and addressing single vesicles remains challenging. The PDMS microchip used herein contains 60 chambers, each with posts able to passively capture single GUVs without compromising their integrity. The design allows for circular valves to be lowered from the channel ceiling to isolate the vesicles from rest of the channel network. GUVs containing calcein were trapped and by rapidly opening the valves, the membrane pore protein α-hemolysin (αHL) was introduced to the membrane. Confocal microscopy revealed the kinetics of the small molecule efflux for different protein concentrations. This microfluidic approach greatly improves the number of experiments possible and can be applied to a wide range of biophysical applications.  相似文献   

9.
We propose an alternate fabrication technique of microchannel resonators based on an assembly method of three separate parts to form a microchannel resonator on a chip. The capability of the assembled microchannel resonator to detect mass is confirmed by injecting two liquids with different densities. The experimental and theoretical values of the resonator frequency shift are in agreement with each other, which confirms the consistency of the device. The noise level of the device is estimated from the Allan variance plot, so the minimum detectable mass of 230 fg after 16 s of operation is expected. By considering the time of the practical application of 1 ms, it is found that a detectable mass of around 8.51 pg is estimated, which is applicable for detecting flowing microparticles. The sub-pico to a few picogram levels of detection will be applicable for the mass analysis of flowing microparticles such as single cells and will be greatly beneficial for many fields such as chemistry, medicine, biology, and single-cell analysis.  相似文献   

10.
In this paper, thermal mixing characteristics of two miscible fluids in a T-shaped microchannel are investigated theoretically, experimentally, and numerically. Thermal mixing processes in a T-shaped microchannel are divided into two zones, consisting of a T-junction and a mixing channel. An analytical two-dimensional model was first built to describe the heat transfer processes in the mixing channel. In the experiments, de-ionized water was employed as the working fluid. Laser induced fluorescence method was used to measure the fluid temperature field in the microchannel. Different combinations of flow rate ratios were studied to investigate the thermal mixing characteristics in the microchannel. At the T-junction, thermal diffusion is found to be dominant in this area due to the striation in the temperature contours. In the mixing channel, heat transfer processes are found to be controlled by thermal diffusion and convection. Measured temperature profiles at the T-junction and mixing channel are compared with analytical model and numerical simulation, respectively.  相似文献   

11.
Focusing cells into a single stream is usually a necessary step prior to counting and separating them in microfluidic devices such as flow cytometers and cell sorters. This work presents a sheathless electrokinetic focusing of yeast cells in a planar serpentine microchannel using dc-biased ac electric fields. The concurrent pumping and focusing of yeast cells arise from the dc electrokinetic transport and the turn-induced ac∕dc dielectrophoretic motion, respectively. The effects of electric field (including ac to dc field ratio and ac field frequency) and concentration (including buffer concentration and cell concentration) on the cell focusing performance were studied experimentally and numerically. A continuous electrokinetic filtration of E. coli cells from yeast cells was also demonstrated via their differential electrokinetic focusing in a serpentine microchannel.  相似文献   

12.
Rapid prototyping of polydimethylsiloxane (PDMS) is often used to build microfluidic devices. However, the inherent hydrophobic nature of the material limits the use of PDMS in many applications. While different methods have been developed to transform the hydrophobic PDMS surface to a hydrophilic surface, the actual implementation proved to be time consuming due to differences in equipment and the need for characterization. This paper reports a simple and easy protocol combining a second extended oxygen plasma treatments and proper storage to produce usable hydrophilic PDMS devices. The results show that at a plasma power of 70 W, an extended treatment of over 5 min would allow the PDMS surface to remain hydrophilic for more than 6 h. Storing the treated PDMS devices in de-ionized water would allow them to maintain their hydrophilicity for weeks. Atomic force microscopy analysis shows that a longer oxygen plasma time produces a smoother surface.  相似文献   

13.
Focusing suspended particles in a fluid into a single file is often necessary prior to continuous-flow detection, analysis, and separation. Electrokinetic particle focusing has been demonstrated in constricted microchannels by the use of the constriction-induced dielectrophoresis. However, previous studies on this subject have been limited to Newtonian fluids only. We report in this paper an experimental investigation of the viscoelastic effects on electrokinetic particle focusing in non-Newtonian polyethylene oxide solutions through a constricted microchannel. The width of the focused particle stream is found NOT to decrease with the increase in DC electric field, which is different from that in Newtonian fluids. Moreover, particle aggregations are observed at relatively high electric fields to first form inside the constriction. They can then either move forward and exit the constriction in an explosive mode or roll back to the constriction entrance for further accumulations. These unexpected phenomena are distinct from the findings in our earlier paper [Lu et al., Biomicrofluidics 8, 021802 (2014)], where particles are observed to oscillate inside the constriction and not to pass through until a chain of sufficient length is formed. They are speculated to be a consequence of the fluid viscoelasticity effects.  相似文献   

14.
Electric field-driven separation and purification techniques, such as isoelectric focusing (IEF) and isotachophoresis, generate heat in the system that can affect the performance of the separation process. In this study, a new mathematical model is presented for IEF that considers the temperature rise due to Joule heating. We used the model to study focusing phenomena and separation performance in a microchannel. A finite volume-based numerical technique is developed to study temperature-dependent IEF. Numerical simulation for narrow range IEF (6 < pH < 10) is performed in a straight microchannel for 100 ampholytes and two model proteins: staphylococcal nuclease and pancreatic ribonuclease. Separation results of the two proteins are obtained with and without considering the temperature rise due to Joule heating in the system for a nominal electric field of 100 V/cm. For the no Joule heating case, constant properties are used, while for the Joule heating case, temperature-dependent titration curves and thermo-physical properties are used. Our numerical results show that the temperature change due to Joule heating has a significant impact on the final focusing points of proteins, which can lower the separation performance considerably. In the absence of advection and any active cooling mechanism, the temperature increase is the highest at the mid-section of a microchannel. We also found that the maximum temperature in the system is a strong function of the ΔpK? value of the carrier ampholytes. Simulation results are also obtained for different values of applied electric fields in order to find the optimum working range considering the simulation time and buffer temperature. Moreover, the model is extended to study IEF in a straight microchip where pH is formed by supplying H+ and OH, and the thermal analysis shows that the heat generation is negligible in ion supplied IEF.  相似文献   

15.
Wang F  Li Y  Chen L  Chen D  Wu X  Wang H 《Biomicrofluidics》2012,6(1):14120-1412012
Hyperthermia can be used as an adjunctive method of chemotherapy, radiotherapy, and gene therapy to improve cancer treatment. In this study, we investigate the hyperthermic cell death of cervix cancer CaSki cells in a microchannel integrated with a directional heating scheme. Heat was applied from the inner end to the outer end of the channel and a temperature distribution from 60 °C to 30 °C was established. A three dimensional (3D) numerical model was conducted for the heat transfer simulation, based on which a simple fitting method was proposed to easily estimate the temperature distribution along the channel. Cell death along the channel was mapped 22 h after the heating treatment by dual fluorescent labeling and phase-contrast microscopy imaging. Upstream, where the temperature is higher than 42 °C, we observe necrotic death, late-stage and early stage apoptotic death in sequence along the channel. Downstream and in the middle of the channel, where the temperature is lower than 42 °C, significant cell detachment was noted. Vigorous detachment was observed even in the non-hyperthermic zone (temperature lower than 37 °C), which we believe is due to the direct effect of the hyperthermic zones (higher than 37 °C). The present work not only gives a vivid map of cell responses under a temperature gradient, but also reveals the potential interactions of the heated tumor cells and non-heated tumor cells, which are seldom investigated in conventional petri-dish experiments.  相似文献   

16.
In microcirculation, red blood cells (RBCs) flowing through bifurcations may deform considerably due to combination of different phenomena that happen at the micro-scale level, such as: attraction effect, high shear, and extensional stress, all of which may influence the rheological properties and flow behavior of blood. Thus, it is important to investigate in detail the behavior of blood flow occurring at both bifurcations and confluences. In the present paper, by using a micro-PTV system, we investigated the variations of velocity profiles of two working fluids flowing through diverging and converging bifurcations, human red blood cells suspended in dextran 40 with about 14% of hematocrit level (14 Hct) and pure water seeded with fluorescent trace particles. All the measurements were performed in the center plane of rectangular microchannels using a constant flow rate of about 3.0 × 10−12 m3/s. Moreover, the experimental data was compared with numerical results obtained for Newtonian incompressible fluid. The behavior of RBCs was asymmetric at the divergent and convergent side of the geometry, whereas the velocities of tracer particles suspended in pure water were symmetric and well described by numerical simulation. The formation of a red cell-depleted zone immediately downstream of the apex of the converging bifurcation was observed and its effect on velocity profiles of RBCs flow has been investigated. Conversely, a cell-depleted region was not formed around the apex of the diverging bifurcation and as a result the adhesion of RBCs to the wall surface was enhanced in this region.  相似文献   

17.
A new microchannel with a series of symmetric sharp corner structures is reported for passive size-dependent particle separation. Micro particles of different sizes can be completely separated based on the combination of the inertial lift force and the centrifugal force induced by the sharp corner structures in the microchannel. At appropriate flow rate and Reynolds number, the centrifugal force effect on large particles, induced by the sharp corner structures, is stronger than that on small particles; hence after passing a series of symmetric sharp corner structures, large particles are focused to the center of the microchannel, while small particles are focused at two particle streams near the two side walls of the microchannel. Particles of different sizes can then be completely separated. Particle separation with this device was demonstrated using 7.32 μm and 15.5 μm micro particles. Experiments show that in comparison with the prior multi-orifice flow fractionation microchannel and multistage-multiorifice flow fractionation microchannel, this device can completely separate two-size particles with narrower particle stream band and larger separation distance between particle streams. In addition, it requires no sheath flow and complex multi-stage separation structures, avoiding the dilution of analyte sample and complex operations. The device has potentials to be used for continuous, complete particle separation in a variety of lab-on-a-chip and biomedical applications.  相似文献   

18.
Electrochemistry is a promising tool for microfluidic systems because it is relatively inexpensive, structures are simple to fabricate, and it is straight-forward to interface electronically. While most widely used in microfluidics for chemical detection or as the transduction mechanism for molecular probes, electrochemical methods can also be used to efficiently alter the chemical composition of small (typically <100 nl) microfluidic volumes in a manner that improves or enables subsequent measurements and sample processing steps. Here, solvent (H2O) electrolysis is performed quantitatively at a microchannel Pt band electrode to increase microchannel pH. The change in microchannel pH is simultaneously tracked at a downstream electrode by monitoring changes in the i-V characteristics of the proton-coupled electro-oxidation of hydroquinone, thus providing real-time measurement of the protonated forms of hydroquinone from which the pH can be determined in a straightforward manner. Relative peak heights for protonated and deprotonated hydroquinone forms are in good agreement with expected pH changes by measured electrolysis rates, demonstrating that solvent electrolysis can be used to provide tunable, quantitative pH control within a microchannel.  相似文献   

19.
20.
Cell filtration is a critical step in sample preparation in many bioapplications. Herein, we report on a simple, filter-free, microfluidic platform based on hydrodynamic inertial migration. Our approach builds on the concept of two-stage inertial migration which permits precise prediction of microparticle position within the microchannel. Our design manipulates equilibrium positions of larger microparticles by modulating rotation-induced lift force in a low aspect ratio microchannel. Here, we demonstrate filtration of microparticles with extreme efficiency (>99%). Using multiple prostate cell lines (LNCaP and human prostate epithelial tumor cells), we show filtration from spiked blood, with 3-fold concentration and >83% viability. Results of a proliferation assay show normal cell division and suggest no negative effects on intrinsic properties. Considering the planar low-aspect-ratio structure and predictable focusing, we envision promising applications and easy integration with existing lab-on-a-chip systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号