首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aims of this cross-grade study were (1) to determine the level of understanding of energy concepts of students at different academic grades and the differences in understanding between these grades and (2) to analyse the conceptual development of these students. Two hundred and forty-three students at 3 different levels (high school, undergraduate, and postgraduate) participated in this study. The students’ understandings of energy concepts were determined using a questionnaire, which requested them to define the concept verbally, and to represent it graphically. The most important findings of this study may be summarised as follows. Students from the different groups generally succeeded in defining ‘energy’ in a similar way, namely as the ‘ability to do work’. Nevertheless, some students (including those at university) also provided different alternative conceptions related to the energy concept. In addition, some students also found difficulty in visually analysing the relationships between different variables using graphs. This finding could help explain why attainment levels of all groups falls short in questions that involve the graphical representation of data.  相似文献   

2.
Difficulties in learning Ohm’s Law suggest a need to refocus it from the law for a part of the circuit to the law for the whole circuit. Such a revision may improve understanding of Ohm’s Law and its practical applications. This suggestion comes from an analysis of the history of the law’s discovery and its teaching. The historical materials this paper provides can also help teacher to improve students’ insights into the nature of science.  相似文献   

3.
While research has focused on the role of racism in (re)producing ethnic/racial inequalities in education, there is very little research that investigates how variability in minority students’ responses to racism can be explained. By using an ecological approach to integrate existing research on actors’ responses to racism, this study finds that researchers have generally neglected factors and processes situated at the micro- and meso-levels of analysis. Qualitative interview data with Turkish–Cypriot children enrolled in schools in the predominantly Greek-speaking part of the Republic of Cyprus are used to investigate their strategies in response to racism and the factors that explain the observed variability in their responses. The findings suggest the importance of and interactions between factors situated at different levels of analysis, including the level of organizations and social groups and face-to-face interactions in explaining variability in young people’s responses to racism.  相似文献   

4.
As students increasingly use online chemistry animations and simulations, it is becoming more important to understand how students independently engage with such materials and to develop a set of best practices for students’ use of these resources outside of the classroom. Most of the literature examining students’ use of animations and simulations has focused on classroom use with some studies suggesting that better outcomes are obtained when students use simulations with minimal guidance while others indicate the need for appropriate scaffolding. This study examined differences with respect to (1) student understanding of the concept of dissolution of ionic and covalent compounds in water and (2) student use of electronic resources when students were asked to complete an assignment either by manipulating a simulation on their own or by watching a screencast in which an expert manipulated the same simulation. Comparison of students’ pre- and posttest scores, answers to assignment questions, near-transfer follow-up questions, and eye-tracking analysis suggested that students who viewed the screencast gained a better understanding of the dissolving process, including interactions with water at the particulate level, particularly for covalent compounds. Additionally, the eye tracking indicated that there were significant differences in the ways that the different treatment groups (screencast or simulation) used the electronic resources.  相似文献   

5.
The aims of this study were to determine the underlying conceptual structure of the thermal concept evaluation (TCE) questionnaire, a pencil-and-paper instrument about everyday contexts of heat, temperature, and heat transfer, to investigate students’ conceptual understanding of thermal concepts in everyday contexts across several school years and to analyse the variables—school year, science subjects currently being studied, and science subjects previously studied in thermal energy—that influence students’ thermal conceptual understanding. The TCE, which was administered to 515 Korean students from years 10–12, was developed in Australia, using students’ alternative conceptions derived from the research literature. The conceptual structure comprised four groups—heat transfer and temperature changes, boiling, heat conductivity and equilibrium, and freezing and melting—using 19 of the 26 items in the original questionnaire. Depending on the year group, 25–55% of students experienced difficulties in applying scientific concepts in everyday contexts. Years of schooling, science subjects currently studied and physics topics previously studied correlated with development of students’ conceptual understanding, especially in topics relating to heat transfer, temperature scales, specific heat capacity, homeostasis, and thermodynamics. Although students did improve their conceptual understandings in later years of schooling, they still had difficulties in relating the scientific concepts to their experiences in everyday contexts. The study illustrates the utility of using a pencil-and-paper questionnaire to identify students’ understanding of thermal concepts in everyday situations and provides a baseline for Korean students’ achievement in terms of physics in everyday contexts, one of the objectives of the Korean national curriculum reforms.  相似文献   

6.
This study investigated the effect of non-traditional guided inquiry instruction on middle school students’ conceptual understandings of lunar concepts. Multiple data sources were used to describe participants’ conceptions of lunar phases and their cause, including drawings, interviews, and a lunar shapes card sort. The data were analyzed via a constant comparative method to produce profiles of each participant’s conceptual understandings and nonparametric tests also were used. Results revealed very positive performance for observable moon phases and patterns of change, as well as the cause of moon phases. Results indicated that significantly more participants shifted from drawing nonscientific shapes on the pretest to drawing scientific shapes on the post-test. Results for the drawings of moon phase sequences were similar in that significantly more participants shifted from drawing alternative waxing and waning sequences on the pretest to drawing scientific sequences on the post-test. Also, significantly more participants shifted from alternative understanding of the cause of the moon phases on the pretest to scientific understanding on the post-test. Implications of these findings and recommendations for further research are provided.  相似文献   

7.
A group of experienced secondary school teachers used a novel learning theory as a resource for planning and carrying out their teaching of a difficult economic concept. Their students mastery of this concept after a series of three lessons was compared with the mastery of the same concept by students who were taught by another group of teachers under the same conditions except for the use of the theory. The difference in learning outcomes was extreme. Observations of what was happening in the classrooms showed subtle but decisive differences correlated with the differences in outcome. These differences were interpreted in terms of the theory used by the first group, and the results seem to give support to the theoretical claim that for any specific object of learning there is a necessary pattern of variation and invariance that the learners must experience in order to appropriate the object of learning in question and thus by bringing out that pattern in the learning situation, the likelihood of that object of learning being appropriated is enhanced. Furthermore, this study shows how the understanding of the simultaneous change in the supply of and the demand for a certain good affects its market price can be brought about in a powerful way.  相似文献   

8.
The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students’ understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high school participated in the study. The classes were randomly assigned as the experimental and control group. The control group (N?=?35) was taught by traditional instruction while the experimental group (N?=?37) was taught cooperative learning based on conceptual change approach instruction. Chemical Bonding Concept Test (CBCT) was used as pre- and post-test to define students’ understanding of chemical bonding concepts. After treatment, students’ interviews were conducted to observe more information about their responses. Moreover, students from experimental groups were interviewed to obtain information about students’ perceptions on cooperative work experiences. The results from ANCOVA showed that cooperative learning based on conceptual change approach instruction led to better acquisition of scientific conceptions related to chemical bonding concepts than traditional instruction. Interview results demonstrated that the students in the experimental group had better understanding and fewer misconceptions in chemical bonding concepts than those in the control group. Moreover, interviews about treatment indicated that this treatment helped students’ learning and increased their learning motivation and their social skills.  相似文献   

9.
Journal of Science Education and Technology - Recent science education reforms, as described in the Framework for K-12 Science Education (NRC, 2012), call for three-dimensional learning that...  相似文献   

10.
This paper presents a research-based teaching-learning sequence (TLS) that focuses on the notion of interaction in teaching Newton’s third law (N3 law) which is, as earlier studies have shown, a challenging topic for students to learn. The TLS made systematic use of a visual representation tool—an interaction diagram (ID)—highlighting interactions between objects and addressing the learning demand related to N3 law. This approach had been successful in enhancing students’ understanding of N3 law in pilot studies conducted by teacher-researchers. However, it was unclear whether teachers, who have neither been involved with the research nor received intensive tutoring, could replicate the positive results in ordinary school settings. To address this question, we present an empirical study conducted in 10 Finnish upper secondary schools with students (n?=?261, aged 16) taking their mandatory physics course. The study design involved three groups: the heavy ID group (the TLS with seven to eight exercises on IDs), the light ID group (two to three exercises on IDs) and the no ID group (no exercises on IDs). The heavy and light ID groups answered eight ID questions, and all the students answered four questions on N3 law after teaching the force concept. The findings clearly suggest that systematic use of the IDs in teaching the force concept significantly fostered students’ understanding of N3 law even with teachers who have no intensive tutoring or research background.  相似文献   

11.
Science teaching and learning require knowledge about how learning takes place (cognition) and how learners interact with their surroundings (affective and sociocultural factors). The study reported on focussed on learning for understanding of Newton’s second law of motion from a cognitive perspective that takes social factors into account. A cognitive refinement instructional approach (CRIA) was used to organise and sequence learning activities, while students were engaged through inquiry and group work. Students’ real-life experiences were used as starting point of the learning sequence. The efficiency of the sequence was determined with the aid of the Force Concept Inventory (FCI) and complemented with the students’ reflections on the sequence, showing their epistemological preferences. The results indicated that a CRIA aided in constructing more coherent scientific knowledge and enhanced understanding, while reducing misconceptions on the topic. In their reflections, the students acknowledged that experiential and experimental evidence, as well as guided formation of a scientific explanatory framework, are foundational for a deeper understanding of the challenging topic.  相似文献   

12.
13.
In this work, we examine middle school students?? understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called Global Warming: Virtual Earth. In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw conclusions about how individual variables effect changes in the Earth??s temperature. They also carry out inquiry activities to make connections between scientific processes, the socio-scientific issues, and ideas presented in the media. Results show that participating in the unit increases students?? understanding of the science. We discuss how students integrate their ideas about global climate change as a result of using virtual experiments that allow them to explore meaningful complexities of the climate system.  相似文献   

14.
15.
16.
17.
This study investigated the effect of metaconceptual teaching interventions on students’ understanding of force and motion concepts. A multimethod research design including quasi-experimental design and case study designs was employed to compare the effect of the metaconceptual activities and traditional instruction and investigate students’ reactions to metaconceptual teaching interventions. The participants (45 high school students in the USA) were enrolled in one of the two physics classes instructed by the same science teacher. In the experimental group, students’ engagement in metaconceptual knowledge and processes was facilitated through various instructional activities, including poster drawing, journal writing, group debate, concept mapping, and class and group discussions. These activities were intended to facilitate students’ engagement in (a) becoming aware of their existing and past conceptions, associated beliefs, everyday experiences, and contextual differences, (b) monitoring their understanding of the new conception, the changes in ideas, and the consistency between existing and new conceptions, and (c) evaluating the relative ability of competing conceptions to explain a physical phenomenon. In the comparison group, the same content knowledge was explained by the teacher along with the use of laboratory experiments, demonstrations, and quantitative problem solving. Students’ reactions to the designed instructional activities indicated that metaconceptual teaching interventions were successful in facilitating students’ engagement in several types of metaconceptual functioning. The results showed that students in the experimental group had significantly better conceptual understanding than their counterparts in the comparison group and this positive impact remained after a period of 9 weeks.  相似文献   

18.
19.
Changing the assessment method is a way to influence the students’ attitudes towards their studies; their ways of working to a large extent are determined by the assessment methods. One way to take advantage of this is to use the assessment to stimulate creativity and communication skills. This has been tried in full‐scale studies for students in engineering physics, computer science and mathematics at Uppsala University and Vdxjö University, both in Sweden. Undergraduate education in engineering, computer science and mathematics has by tradition emphasized training in skills. The examination often consists of problems that the students solve individually. It is difficult to give complex and/or loosely defined problems in such an examination. The students are not encouraged to analyze, judge, communicate or discuss these skills. In fact, in the authors’ experience, traditional examinations can actually inhibit the development of the students’ independence and creativity. Both projects have been supported by the Council for Renewal of Undergraduate Education, Sweden.  相似文献   

20.
Monte Carlo methods were employed to evaluate the degree to which canonical function and structure coefficients may be differentially sensitive to sampling error. Sampling error influences were investigated across variations in variable and sample sizes, across variations in average within-set correlation sizes, and in across-set population correlation sizes. Sixty-four different research situations were investigated, and for each situation 1,000 random samples were drawn. Results suggest that both sets of coefficients are roughly equally influenced by sampling error, except perhaps when some intradomain correlation coefficients are quite large. Thus, the case for emphasizing interpretation of structure coefficients must be made on a psychometric basis rather than on the grounds that structure coefficients are less sensitive to sampling error influences, notwithstanding the positions previously taken by some theorists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号