首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
勾股定理是数学中的重要定理,下面举例说明它在实际问题中的一些应用.例1如图1,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足B将外移米.解:在Rt△ABC中,由勾股定理,得AC=!2.52-0.72%=2.4(米),∴A′C=AC-AA′=2.4-0.4=2(米).在Rt△A′B′C中,由勾股定理,得B′C=!2.52-22%=1.5(米).∴B′B=B′C-BC=1.5-0.7=0.8(米).即梯足B将外移0.8米.例2有一块如图2所示的四边形红绸布,∠B=∠D=90°,∠A=60°,AD=8%*3米,DC=2米,现要求裁剪出两面三角形和矩形的小旗(不…  相似文献   

2.
直角三角形是一种特殊的三角形,它具有许多重要性质,特别是勾股定理及其逆定理在初中数学中有着广泛的应用,因此根据问题的图形特征,添加适当的辅助线,巧妙构造直角三角形,往往能够迅速找到解题途径.现略举几例解析如下:例1如图1,△ABC是边长为2的正三角形,E是AB边的中点,延长BC至D,使CD=BC,连接ED,求ED的长.解:连接AD,因为AC=CD,所以△ACD是等腰三角形,所以∠ADB=∠DAC,因为∠ACB=∠ADB ∠DAC,而∠ACB=60°,所以∠ADB=30°,又∠B=60°,所以∠BAD=90°,则△BAD是直角三角形,所以AD2=BD2-AB2=42-22=12,在Rt△EAD中…  相似文献   

3.
勾股定理是初中几何中的一个极为重要的定理,它在数学解题中有着广泛的应用.本文举例说明勾股定理在几何证题中的应用.例1如图1,在△ABC中,AB=AC,BDAC于D.求证:分析在Rt△BDC和Rt△ADB中,由勾股定理,得于是,要证结论成立,只要证即可.这只要经过适当的恒等变形即得.事实上,故结论可证.证明略.例2如图2,在锐角三角形ABC中,CD是高.求证:分析要证结论成立,只要证:(1)(2)要证.这由勾股定理即得.要证,只要证因为AD+DB=AB,所以此结论成立.故命题结论可证.证明略.例3如图3,在△ABC中,是BC边的…  相似文献   

4.
江苏省第八届初中数学竞赛第五题是:已知△ABC 和△ACE 都是直角三角形,且∠ABD=∠ACE=90°.如图(a),连结 DE,设 M 为 DE 中点.(1)求证:MB=MC;(2)设∠BAD=∠CAE,固定 Rt△ABD,让 Rt△ACE 绕顶点 A 在平  相似文献   

5.
错了,老师     
暑假数学兴趣小组正常开课了 .一天 ,老师出了一道文字证明题“求证 :有两边及其中一边上的高对应相等的两个三角形全等 .”经过分析讨论 ,老师证明如下 :已知 :如图 1 ,△ABC与△A1 B1 C1 中 ,AB =A1 B1 ,BC =B1 C1 ,AD⊥BC于点D ,A1 D1 ⊥B1 C1 于点D1 ,且AD =A1 D1 .图 1求证 :△ABC≌△A1 B1 C1 .证明   在Rt△ABD与Rt△A1 B1 D1 中 ,AB =A1 B1 ,AD =A1 D1 ,∴Rt△ABD ≌Rt△A1 B1 D1 ,∴∠B =∠B1 ,又∵AB =A1 B1 ,BC =B1 C1 ,∴△ABC≌△A1 B1 C1 .老师证明时画的是锐角三角形 ,而我在分析时画的是钝…  相似文献   

6.
杨泽 《云南教育》2003,(5):44-45
本世纪的教育特征,是以学生发展为本。培养学生的创新意识与创新能力,是当前数学教育的一项主要任务。根据教材、知识特点,对某些问题进行有计划、有步骤的改变,是启发、培养学生创新能力的有效手段。“求变”就是在数学教学中对题型进行多角度、多层次的演变,例如变命题的题设、结论,这类问题可启发学生的发散思维,从而提高数学素养。例如图1,△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D。求证:DE=DB(平几教材第三册117页12题)证明:连结BE则BE平分∠ABC,即∠ABE=∠EBC由于∠BED=∠ABE+∠BAD,∠EB…  相似文献   

7.
试题 如图1,在直角梯形ADEB中,∠D=∠E=90°,△ABC是等边三角形,点C在DE上,已知AD=7,BE=11,求等边△ABC的面积. (第24届“希望杯”全国数学邀请赛初二第2试)  相似文献   

8.
一、填空题(每空2分,共18分)1.两个能够完全重合的图形称为____________,全等图形的__________和大小完全相同.2.如图1,若△OAD≌△OBC,且∠O=65°,∠C=20°则∠OAD=_____________.3.如图2,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)____________.4.如图3,P是∠AOB的平分线上一点,PC⊥OA于C,PD⊥OB于D,则图中相等的线段有__________________.5.在Rt△ABC与Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=A′B′,则下列结论①AC=A′C′,②BC=B′C′,③AC=B′C′,④∠A=∠A′中,正确的是____…  相似文献   

9.
如图,Rt△ABC斜边上的高CD将此三角形分为两个三角形:△CDA、△CDB。我们熟知△ACD∽△CDB∽△ACB 设AC=b,CB=a,AB=c,AC=p,DB=q,CD=h,∠ACD=∠B=β,∠BCD=∠A=α,由勾股定理、面积公式、锐角三角函数的定义,Rt△中的射影定理等可知,在上面八个元素中(其中至少一条线段)任意知道二个元素可求出其余六个元素  相似文献   

10.
本文所说的“渗透型”中考几何试题 ,是指高于初中数学内容的有关几何题。这类渗透型几何试题 ,不仅能够考查学生接受新知识、认识新事物的能力 ,而且也考查了学生接受新事物、适应新情况、运用新知识的创新能力。现以部分中考题为例说明如下 :例 1 阅读材料 ,解答问题命题 :如图 1,在锐角△ ABC中 ,BC=a,CA=b,AB=c,△ ABC的外接圆半径为 R。则 asin A=bsin B=csin C=2 R。证明 :连结 CO并延长交圆于点 D,连结 DB,则∠ D=∠ A。∵ CD为圆的直径 ,∴∠ DBC =90°,在 Rt△ DBC中 ,∵ sin D=BCDC=a2 R,∴ sin A=a2 R,即asin …  相似文献   

11.
数学思想是数学知识的灵魂,是解题的金钥匙.在利用勾股定理解题时,要注意结合利用一定的数学思想.现举例介绍如下: 一、方程思想 例1(宁波市中考题)如图,△ABC中,∠ACB=90°,CD⊥AB于点D,AD=9,BD=4,则AC=____. 分析:显见,△ABC、△ACD、△BCD都是直角三角形.从Rt△ACD入手,要求AC的长,关键在于求CD的长.先用CD的代数式分别表示AC和BC,再根据AC、BC和AB之间的平方关系,能构造一个关于CD的方程.  相似文献   

12.
一、延长根据已知条件 ,延长一条或几条线段 ,构成所需图形。例 1.已知 :四边形 ABCD中 ,∠ BAD=60°,∠ B=∠ D=90°,BC=11,CD=2。求 :对角线 AC的长。分析 :在 Rt△ ABC中 ,BC是已知的 ,若求出 AB的值 ,问题即可解决。设法把 AB放到另一个直角三角形中 ,延长 AD交 BC的延长线于点 E。这样 ,在 Rt△ CDE中 ,求出 CE值 ,然后得出BE值 ;在 Rt△ ABE中 ,得出 AB值 ;最后 ,在 Rt△ ABC中 ,求出AC的值。二、连结如连结多边形的对角线、三角形的中位线和梯形的中位线 ,从而可以利用它们的定理来解决问题。例 2 .在△ ABC中…  相似文献   

13.
第 42届IMO第五题是 :在△ABC中 ,AP平分∠BAC ,交BC于P ,BQ平分∠ABC ,交CA于Q .已知∠BAC =60° ,且AB +BP =AQ +QB .问△ABC各角的度数的可能值是多少 ?先求解 ,再给出更一般的结论 .图 1解 :如图 1,在AB的延长线上取点D ,使得BD =BP ;在AQ的延长线上取点E ,使得QE =QB .连结PD、PE ,则AD =AB +BP =AQ +QB =AE ,且 △ADP∽△AEP .故∠AEP =∠ADP =12 ∠ABC =∠QBC ,即 ∠QEP =∠QBP .下面的证明中要用到如下的引理 .引理 等腰△ABC中 ,AB =AC ,平面内一点P满足∠ABP =∠ACP ,则点P在BC的…  相似文献   

14.
一、原题如图,(?)O 是ΔABC 的内切圆,切点分别为 D、E、F,设ΔABC 的周长为 l.求证:AE+BC=1/2l. 证明:连结 OE、OF、OA.∵⊙O是△ABC 的内切圆,E、F 为切点,∴∠AEO=∠AFO=Rt∠.又∵OE=OF,OA=OA,∴△AOE≌△AOF∴AE=AF.同理,BD=BF,CD=CE.  相似文献   

15.
定理 若△DEF是锐角△ABC的垂足三角形 ,且BC =a ,CA =b,AB =c,△AEF、△BDF、△CDE的内切圆分别为⊙I1、⊙I2 、⊙I3,其半径依次为r1、图 2r2 、r3,则有 ar1+br2+cr3≥ 1 2 3。证 ∵BE⊥AC ,CF⊥AB ,∴∠BEC =∠CFB =90°。又因E、F在BC的同侧 ,∴B、C、E、F四点共圆 ,∴∠AEF =∠B ,∠AFE=∠C ,故△AEF∽△ABC ,∴ EFBC=AEAB=r1r ,其中r为△ABC内切圆半径。在Rt△ABE中 ,cosA =AEAB,故 r1r =cosA ,即r1=rcosA ,同理r2 =rcosB ,r3=rcosC。  从而 ar1=arcosA =arsinA·tanA =2Rr ·tanA≥4tanA ,R…  相似文献   

16.
666.在Rt△ABC中,CD是斜边上的高,记 I1、I2、I分别是△ADC、△BCD、△ABC的内心,I在AB上的射影为O1,∠CAB、∠ABC 的平分线分别交BC、AC于P、Q,PQ的连线与CD相交于O2.求证:四边形I1O1I2O2为正方形.证:如图1,不妨设BC≥AC.由题设,有 Rt△ADC∽ Rt△CDB,所以AC/BC=I1D/I2D,又∠I1DI2=90°=∠ACB,从而Rt△DI1I2∽ Rt△CAB,∠I2I1D=∠CAB…………………①  相似文献   

17.
如果两个直角三角形有公共边,我们可以把这个公共边作为“桥梁”,应用勾股定理建立两个三角形中边的关系.下面举例说明.例1如图1,已知:在△ABC中,AD⊥BC于D,求证:AB~2+CD~2=AC~2+BD~2.证明AD是Rt△ABD和Rt△ACD的公共边,由勾股定理得  相似文献   

18.
如图 1 ,在Rt△ABC中 ,∠C =90°,∠A =3 0°,∠C的角平分线与∠B的外角的平分线交于E点 ,连结AE ,则∠AEB是 (   ) .图 1A .5 0°   B .45°C .40°   D .3 5°本题是 2 0 0 3年山东省初中数学竞赛试题 ,其构题巧妙 ,能较好地考查学生的平面几何的相关知识 ,如角平分线、正方形、全等形等概念与性质 ,而本题在竞赛这一特定的条件下要正确迅速解答还是有一定的难度 ,以下就本题谈一点看法 .思路分析 :先看∠AEB能否直接求出 .显然 ,在现有图形中不能直接求出 ,思路受阻 .由于∠AEB是在Rt△ABC外构成的角 ,又∠AEB =∠A…  相似文献   

19.
20 0 3年全国初中数学联赛第二试第二题是 :在△ABC中 ,D为AB的中点 ,分别延长CA、CB到点E、F ,使DE =DF .过E、F分别作CA、CB的垂线 ,相交于点P .求证 :∠PAE =∠PBF .这是一道难度适中 ,思路清晰的纯平面几何题 ,命题组给出了一种基本证法 .为了开阔学生的视野 ,下面再给出本题的两种新证法 ,以飨读者 .证法 1 :如图 1 ,延长FD到G ,使DG =FD ,连结AG、EG、EF .∵AD =BD ,∠ADG =∠BDF ;∴△ADG≌△BDF ,∴AG =BF ,∠DAG =∠DBF .又PE⊥CE ,PF⊥CF ,∴C、E、P、F四点共圆 .∴∠EPF =1 80°-∠C .又∠DA…  相似文献   

20.
在数学学习中,同学们常常会利用特殊平面图形面积公式来解决一些一般平面图形的面积问题。你可知道,我们还可用这些面积公式来解决一些其它数学问题。图1一、利用面积可以验证勾股定理例1如图1,我们知道在Rt△ABC中,两条直角边与斜边有如下关系:a2+b2=c2即在直角三角形中,两条直角边的平方和等于斜边的平方。图2将四个全等的直角三角形拼成图2,利用计算小正方形的面积可以验证勾股定理。S小正方形=S大正方形-4SRt△即c2=(a+b)2-4×12·a·b=a2+2ab+b2-2ab∴c2=a2+b2.二、利用面积可以求出直角三角形斜边上的高例2如图3,在Rt△ABC中,BC…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号