首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
例1 已知分别过抛物线 y~2=2px 上点 A(x_1,y_1),B(x_2,y_2)的两条切线相交于 P(x′,y′).求证:x′=(y_1y_2)/2p,y′=(y_1 y_2)/2.证明如图1,由文献[1]可知过 A,B 两点的切线方程为:l_1:y_1y=p(x x_1);l_2:y_2y=p(x x_2).又 P 在 l_1,l_2上,有y_1y′=p(x′ x_1); (1)y_2y′=p(x′ x_2). (2)式(1)-式(2)得(y_1-y_2)y′=p(x_1-x_2).又 x_1=y_1~2/2p,x_2=y_2~2/2p,代入上式整理得y′=1/2(y_1 y_2), (3)将式(3)代入式(1)得1/2y_1(y_1 y_2)=px′ py_1~2/2p,由此得 x′=y_1y_2/2p,所以  相似文献   

2.
<正>我们知道,经过点M_0(x_0,y_0),倾斜角为α(α≠π/2)的直线l的参数方程为{x=x_0+tcosα,y=y_0+tsinα(t为参数),其中参数t的几何意义是:|t|表示直线上的动点M(x,y)到定点M_0(x_0,y_0)的距离,若t>0,则动点M在定点M_0的上方;若t<0,则动点M在定点M_0的下方;若t=0,则动点M与  相似文献   

3.
下面就通过几个例子谈谈几种常见的解几模型在解决代数问题中的应用.1.构造两点间的距离公式对于形如(x-a)2+(y-b)2型的代数问题,常可构造两点间的距离公式来解决.【例1】 求函数y=x2-8x+17+x2+4x+29的最小值.图1分析 本题用代数方法求解,较难入手,观察函数表达式中,二次根式的被开方式为二次式,联想到距离公式,不妨借助函数式的几何意义,运用数形结合的方法求解.解:将函数解析式改写成y=(x-4)2+(0-1)2+(x+2)2+(0-5)2,根据两点间的距离公式知,y表示x轴上的动点P(x,0)到两定点A(4,1)和B(-2,-5)的距离之和(如图1).于是问题转化为求动折线A…  相似文献   

4.
数学科     
例一:已知幂函数图像过点M(2,1/4),则f(0.5)=( )(A)2~(1/2)/2 ;(B)1/4;(C)4;(D)2~(1/2)[评析]这道题考查了函数的基本概念,初等函数的解析表达式,当x=x_0时求函数值y_0=f(x_0),及待定系数法等重要内容.解答本题首先要清楚幂函数的解析式是y=x~n,其次对函数图像的概念:“设函数y=f(x)定义在数集A上,则坐标平面上的点集{(x,y)|x∈A,y=f(x)}称为函数y=f(x)的图像”有明确的认识.一般的函数图像过点M(x_0,y_0).可以理解为x=x_0时y=y_0由已知幂函数  相似文献   

5.
解析几何是用代数方法研究几何问题的一门学科,把几何问题代数化,可以降低逻辑推理的难度;反过来,对于一些较繁的代数问题,也可以通过解析几何公式转化为几何问题,通过逻辑推理的方法代替代数运算,本文略举几则.一、构造两点间距离解题【例1】求函数y=x2-2x 5 x2-4x 5的最小值.分析:函数式为两个根式,这两个根式可分别转化为两点间的距离.解:函数解析式可改写为y=(x-1)2 (0-2)2 (x-2)2 [0-(-1)]2当x变化时,它表示动点P(x,0)到两定点A(1,2)与B(2,-1)的距离之和.如图1,点P在x轴上移动,有|PA| |PB|≥|AB|,当且仅当P、A、B三点共线时取等…  相似文献   

6.
直线y=kx+b上两点A(x_1,y_1),B(x_2,y_2)间距离  相似文献   

7.
线段的定比分点坐标公式x=(x_1 λx_2)/(1 λ),y:(y_1 λy_2)/(1 λ),λ=(x-x_1)/(x_2-x)反映了线段的起点P(x_1,y_1)、终点P_2(x_2,y_2)、分点P(x,y)与定  相似文献   

8.
定义若圆上任一点到点 A 的距离与到点 B 的距离的比恒为常数λ(λ>0,λ≠1),则称该圆分有向线段()所成的比是λ;该圆称为有向线段()的定比分圆.定理设 A(x_1,y_1)、B(x_2,y_2)是定点,一个圆分有向线段()所成的比是λ,则该圆的圆心坐标是 x_0=(x_1-λ~2x_2)/(1-λ~2),y_0=(y_1-λ~2y_2)/(1-λ~2),半径是 r=λ|1-λ~2|·|AB|.证明:设 P(x,y)是圆上的动点,由 |PA|/|PB|=λ得(x-x_1)~2 (y-y_1)~2=λ~2[(x-x_2)~2 (y-y_2)~2],经整理,得x~2 y~2-2x·(x_1-λ~2x_2)/(1-λ~2)-2x·(y_1-λ~2y_2)/(1-λ~2)=(λ~2x_2~2 λ~2y_2~2-x_1~2-y_1~2)/(1-λ~2),配方并化简整理,得  相似文献   

9.
众所周知,过二次曲线Ax~2+Cy~2+Dx+Ey+F=0 (g)上一点P_1(x_1,y_1)的切线方程为Ax_1x+Cy_1y+D((x_1+x)/2)+E((y_1+y)/2)+F=0(h)。这是一个将切点(曲线上的点)的坐标x_1、y_1与切线上的点(曲线外的点)的坐标x、y联系起来的公式。当已知切点P_1的坐标P_1(x_1,y_1)时,将x、y看作变量,则(h)为过P_1的切线上点的坐标满足的方程,即过P_1的切线方程。当已知曲线外一点P的坐标P(x,y)时,将x_1、y_1看作变量,则(h)  相似文献   

10.
求已知点P(x_0,Y_0)关于直线y=kx m的对称点P'(x,y),通常是解方程组 {1/2(y y_0)=k·1/2(x x_0) m (y-y_0)/(x-x_0)=-(1/k) 但当k=±1时,可直接用对称轴方程y=±x m即x=±y±m代换以求P'点的位置。定理1 若P'(x,y)是点P(x_0,y_0)关于直线y=x m的对称点,则 {x=y_0-m, y=x_0 m。证明比较简单,兹从略。特别地,当m=0时,点p(x_0,y_0)和点p'(y_0,x_0)关于直线y=x对称。推论1 曲线f(x,y)=0关于直线y=x m对称的曲线方程是f(y-m,x m)  相似文献   

11.
平面图形翻折的实质是一种旋转变换,本文利用坐标法推导平面图形上两点经翻折后的距离公式,并举例介绍公式的应用。定理如图1,设平面直角坐标系xOy内两点A(x_1,y_1),B(x_2,y_2)(其中y_1>0,y_2<0),若固定半平面x′Oy′x,将半平面xOyx′沿着x′x  相似文献   

12.
本文将双曲线的弦的垂直平分线及其应用简介如下,供参考.定理 设A、B是双曲线x~2/a~2-y_2/b_2=1上的两点,线段AB的垂直平分线ι交X轴于P(X_0,0),线段AB中点坐标为(x′,y′),则 x_0=e~zx~ι,其中e为双曲线的离心率.证明设A(x_1y_1),B(x_2,y_2),  相似文献   

13.
我们熟知:当已知线段两端点为P_1(x_1,y_1)、P_2(x_2,y_2)、点P(x,y)分所成的比为λ时,点P的坐标是: x=(x_1+λx_2)/1+λ,y=(y_1+λy_2)/1+λ(λ≠-1) 如果我们将上述线段更换为圆柱、棱柱、圆台、棱台、圆锥、棱锥,则可得到一组与线段定比分点坐标公式形式相似的结论: 若换线段为棱台有:结沦一:设棱台上、下底的面积分别为S′、S,平行于两底的截面积为S_0,若截面分高的上、下两部分之比为λ,则:  相似文献   

14.
92年上海市有这样一道高考题: 设动直线l垂直于x轴,且与椭圆x~2/4 y~2/2=1交于A、B两点,P是l上满足|PA|·|PB|=1的点,求点P的轨迹方程,并说明轨迹是什么图形? 解:如图1,设点P(x,y),点A(x_1,y_1),则B(x,-y_1)。由于A、B两点在椭圆上,所以又由1-x~2/4=y_1~2/2等,得-2相似文献   

15.
设△OAB的顶点坐标为O(0,0),A(x_1,y_1),B(x_2,y_2)(按逆时针方向排列),则x_1y_1-x_2y_1=|x_1 y_1 x_2 y_2|=|0 0 1 x_1 y_1 1 x_2 y_2 1|=2S_(△OAB)=OA·OBsin∠O.应用这个方法可以把几类条件代数极值问题化为几何极值问题来处理. 例1.设ax by=c(a,b,c∈R~ ,x,y∈R~-),求f(x,y)=mx~(1/2) ny~(1/2)(m,n>0)的极值. 解考虑点A((ax)~(1/2),-(by)~(1/2)),B(n/b~(1/2),m/a~(1/2)),∠AOB=θ,则  相似文献   

16.
<正>等腰三角形问题和直角三角形问题是二次函数探究中常见的两类问题,如何快速正确的解决这两类问题,笔者在解题实践中发现,运用两点间距离公式,能起到较好的作用.公式模型:在平面直角坐标系中,若A(x_1,y_1),B(x_2,y_2).则A、B两点间的距离公式为  相似文献   

17.
每期一题     
题:若抛物线y=ax~2- 1(a≠0)上存在关于直线l:x y=0对称的两点,试求a的范围。解法1(判别式法)设抛物线上关于直线l对称的相异两点分别为P、Q,则PQ方程可设为y=x b。由于P、Q两点的存在,所以方程组 y=x b 有两组不相同的实数 y=ax~2-1 解,即可得方程: ax~2-x-(1 b)=0 ①判别式△=1 4a(1 b)>0 ②又设P(x_1,y_1),Q(x_2,y_2),PQ中点M(x_0,y_0)。由①得x_0=x_1 x_2/2=1/2a,y_0=  相似文献   

18.
椭圆以某定点为中点的弦并非一定存在,那么,中点弦存在的充要条件是什么?有何应用,本文作下列探讨: 一中点弦方程的一种求法。设椭圆b~2x~2 a~2y~2-a~2b~2=0,(a>0,b>0)…(1) 及定点P_0(x_0,y_0),若以P_0为中点的弦存在,且两端点分别为A(x_1,y_1),B(x_2,y_2) 则:b~2x_1~2 a~2y_1~2-a~2b~2=0 b~2x_2~2 a~2y_2~2-a~2b~2=0 两式相减整理得: (y_1-y_2)/(x_1-x_2)=(x_1 x_2)/(y_1 y_2)·b~2/a~2 =-b~2/a~2·x_0/y_0 (x_1≠x_2) 即k=-(b~2x_0)/(a~2y_0),代入点斜式得中点弦方程:a~2y_0y b~2x_0x=a~2y_0~2 b~2x_0~2……(2) 如果x_1=x_2,那么y_0=0,中点弦方程为x=x_0仍包含在(2)中。  相似文献   

19.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

20.
贵刊1983年第5期刊登了《一类直线方程的四种求法》一文,该文介绍了解决如下问题的四种方法:过二次曲线C:F(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部[指包含焦点的平面区域(不包括周界)]已知点M(x_0,y_0)作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得点M平分弦AB。对于这类问题,可作如下推广:过M作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得M点为弦AB的n等分点。当n≥3时,用《一类直线方程的四种求法》一文介绍的四种方法来求  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号