首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
[定理1] 设曲线a:F(x,y)=0关于直线l:Ax+By+C=0的对称曲线是a’,则a’的方程为 F(x-(2A(Ax+By+C))/(A~2+B~2),y-(2B(Ax+By+C))/(A~2+B~2))=0 (1) 证:设a上任一点P(x_1,y_1)关于l的对称点是M(x,y).则PM的中点((x+x_1)/2,(y+y_1)/2)∈l,且PM⊥l.当A≠0且B≠0时,  相似文献   

2.
设点P(x_0,y_0),直线l:Ax+By+C=0,求点P(x_0,y_0)到直线l:Ax+By+C=0距离公式的推导无论是原来的旧教材还是现在的新课标教材,都指出由点P(x_0,y_0)向直线l作垂线,垂足为Q,求出Q  相似文献   

3.
关于圆锥曲线弦的求法,笔者得到一条结论,现提供于下。 定理:设圆锥曲线C的方程为F(x,y)=0,M、N为C上不同两点,若线段MN的中点为P(a,b),则直线MN的方程为 F(x,y)-F(2a-x,2b-y)=0。 (*) 证明:设M点的坐标为(x_1,y_1),M在圆锥曲线C上,F(x_1,y_1)=0。又因为线段MN的中点P的坐标为(a,b),N的坐标为(2a-x_1,2b-y_1)。又N在圆锥曲线C上,  相似文献   

4.
考虑到定比分点公式中λ是有向线段的比,我们可以很容易地得到一个很有用处的定理:过 P_1(x_1,y_1),P_2(x_2,y_2)两点的直线若与直线L:Ax+By+C=0相交于点P,则  相似文献   

5.
倾斜角为a=(kπ)/4的直线有四条l_1:x=a,l_2:y=b,l_3:x y-b=0,l_4:x-y b=0. 设(x_0,y_0)关于直线Ax By C=0的对称点为(x′,y′).应用对称点坐标公式可分别求得关于l_1-l_4的对称点坐标:  相似文献   

6.
引理1 设两已知点p_1(x_1,y_1)、p_2(x_2,y_2)的连线交直线Ax+By+c=0于点P(P_2不在此直线上).则  相似文献   

7.
定理已知点P(a,0)、Q关于直线l:Ax+By+C=0对称,点R(x_0,y_0)是直线PQ外一点,则证明:设Q坐标为(X,Y)。∵直线PQ和直线l互相垂直, ∴ Y-b/X-a=B/A,即 BX-AY=Ba-Ab. (1)又∵ P、Q关于直线l对称,且在l的两侧, ∴ AX+BY+C=-(Aa+Bb+C),即 AX+BY=-(Aa+Bb+2C). (2) 将(1)、(2)联立,可得如下关于X、Y的线性方程组: BX-AY=Ba-Ab, AX+BY=-(Aa+Bb+2C),解之得X=Au+a, u=-2(Aa+Bb+C)/A~2+B~2 Y=Bu+b, ∴点Q坐标为(Au+a,Bu+b).  相似文献   

8.
本文给出一个关于直线分线段所成比的性质定理。并举例说明它的广泛应用.定理设直线 l:Ax By C=0与过P_1(x_1,y_1)、P_2(x_2,y_2)的不同两点的连线相交于点 P(不同于 P_1、P_2,且 P_1、P_2不在 l上),则  相似文献   

9.
<正>1.圆锥曲线涉及中点弦求曲线方程和直线方程的问题,经常用点差法设而不求解题例1已知椭圆E:x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若AB的中点坐标为(1,-1),求椭圆E的方程。解:设点A(x_1,y_1),B(x_2,y_2),则(x_1-x_2)(x_1+x_2)/a2=-(y_1-y_2)(y_1+y_2)/b2=-(y_1-y_2)(y_1+y_2)/b2。  相似文献   

10.
每期一题     
题:若抛物线y=ax~2- 1(a≠0)上存在关于直线l:x y=0对称的两点,试求a的范围。解法1(判别式法)设抛物线上关于直线l对称的相异两点分别为P、Q,则PQ方程可设为y=x b。由于P、Q两点的存在,所以方程组 y=x b 有两组不相同的实数 y=ax~2-1 解,即可得方程: ax~2-x-(1 b)=0 ①判别式△=1 4a(1 b)>0 ②又设P(x_1,y_1),Q(x_2,y_2),PQ中点M(x_0,y_0)。由①得x_0=x_1 x_2/2=1/2a,y_0=  相似文献   

11.
定理设二次曲线方程为F(x,y)=Ax~2+2Bxy+Cy~2+2Dx+2Ey +F=0。(1)过平面上任意一定点M(x_0,y_0)(除去曲线的中心)作动直线,与曲线(1)交于P_1、P_2两点,则弦P_1P_2的中点轨迹方程是Φ(x-x_0,y-y_0)÷F_1(x_0,y_0)(x-x_0) ÷F_2(x_0,y_0)(y-y_0)=0(2)并且曲线(1)与曲线(2)同族。其中Φ(x,y)=Ax~2+2Bxy+Cy~2 F_1(x,y)=Ax+By+D F_2(x,y)=Bx+Cy+E 证明:设过定点M(x_0,y_0)的动直线为  相似文献   

12.
文[2]对文[1]作了推广,文[2]中定理如下:定理:过圆锥曲线准线上一点,作该曲线的两条切线,两切点所在直线过相应焦点(其中双曲线准线上的点应在两渐近线之间).笔者受其启发,对文[2]再作推广如下:定理:直线z与圆锥曲线无交点,P∈l,过P若存在两条直线与圆锥曲线相切,则两切点所在直线恒过定点,并以该定点为中点的弦平行于直线 l.证明:设直线 l 方程:Ax By C=0(C≠0),两切点为 M(x_1,y_1),N(x_2,y_2),P(x_0,y_0).  相似文献   

13.
问题设直线l的方程为Ax+By+C=0,求已知点M(x_1、y_1)关于l的对称点N的坐标(x,y)。《中学数学教学》1992·3期刊出了赵士森、宫宋家二位老师的一种解法,很受启发。这里再提出一种解法,较简捷些,解法如下。  相似文献   

14.
<正>已知椭圆(x2)/(a2)/(a2)+(y2)+(y2)/(b2)/(b2)=1(a>b>0)与直线l相交于M,N两点,点P(x_0,y_0)是弦MN的中点,则由点差法可得直线l的斜率k=-(b2)=1(a>b>0)与直线l相交于M,N两点,点P(x_0,y_0)是弦MN的中点,则由点差法可得直线l的斜率k=-(b2)/(a2)/(a2)·(x_0)/(y_0)。这类涉及椭圆弦的中点问题就是中点弦问题,解决这类问题通常用点差法。本文就用具体的例子来谈谈这类问题的解法。例1已知椭圆(x2)·(x_0)/(y_0)。这类涉及椭圆弦的中点问题就是中点弦问题,解决这类问题通常用点差法。本文就用具体的例子来谈谈这类问题的解法。例1已知椭圆(x2)/(a2)/(a2)+(y2)+(y2)/(b2)/(b2)=1(a>b>0)的  相似文献   

15.
1.问题的提出: 已知平面上的点P_0(x_0,y_0)及直线l:Ax By C=0,如何求出点P_0到直线l的距离d呢?  相似文献   

16.
解析几何课本(甲种本)49页中,对点到直线距离公式的推导,分α<90°和α>90°两种情况,分别得α_1=α和α_1=π-α。讨论相当烦琐。但,如果采用下面的推导方法,将简便得多。在直角三角形中,两直角边为a,b,斜边为c,斜边上的高为d。大家熟知有c~2=a~2 b~2。利用面积相等有:a~2b~2=d~2(a~2 b~2),这样就得另一有趣的简单关系:1/d~2=1/a~2 1/b~2。下面就利用这个关系推导点到直线的距离公式: 已知点P(x_0,y_0)和直线l:Ax By C=0, (1)当A≠0,B≠0,且P不在l上时: 这时l不平行于坐标轴。过P分别作平行于y轴,x轴的直线分别与l交于M(x_1,y_1)和N(x_2,y_2)。在所设条件下,PMN  相似文献   

17.
直线方程Ax+By+C=0一次项系数的几何意义:向量(A,B)是直线Ax+By+C=0的法线方向.设点p坐标为(x1,y1),直线l的方程是Ax+By+C=0,过点P作直线l的垂线,垂足为D,线段PD的长度是点P到直线l的距离。  相似文献   

18.
求定点P(x_6,y_0)关于直线l:Ax+By+C=0的对称点P’的坐标,按照常规的方法是先求出过定点P(x_0,y_0)而且与l_c Ax+By=0垂直的直线方程,然后求出两直线的交点,再利用中点坐标公式,求出对称点P'的坐标。蔡乘湘曾经在《教学与研究》(1987—1)上刊文给出特殊情形(A=±1B=-1)的计算公式。本文将给出一般情形的坐标计算公式,于是蔡乘湘所给出的定理就作为这个公式的特例。值得一提的是所给出的坐标计算公式在形式上与点到直线的距离公式有密切的联系,很容易记忆,计算也方便,推导过程也不困难。  相似文献   

19.
解几中的有关对称问题,课本中没有给出系统内容,但解题中又经常用到,本文将结合图形,根据对称特点,找出规律,予以总结.1.“点关于点”的对称.点 P(x_1,y_1)关于 M(x_0,y_0)的对称点 P 的坐标,可由中点坐标公式得出:P′(2x_0-x_1,2y_0-y_1).2.“点关于直线”的对称直线 l 外一点 P(m,n)关于直线.:Ax By C=0(A,B 不同时为零)的对称点 P′的坐标,可利用 PP′与 l 的位置关系——l 垂直且平分 PP′求得,实际上是转化为“点关于点”的对  相似文献   

20.
思维是数学的心脏,问题是数学得以发展的源泉,下面我们对一个旧问题进行思考和探究.问题1 一直线 l 被两直线 l_1:4x+y+6=0和l_2:3x-5y-6=0截得的线段 MN 的中点 P 恰好是坐标原点,求直线 l 的方程.解法1:常规解法.设直线 l 与 l_1、l_2分别交于 M、N 两点,设点 M 坐标为(x_0,y_0),则点 N 的坐标为(-x_0,-y_0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号