首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使α=λ1e1+λ2e2.这个定理揭示了平面向量的基本  相似文献   

2.
高中数学新教材的向量内容中有一个很重要的定理 ,其应用面也比较大 ,对向量知识的进一步理解和掌握也具有积极的意义 .一、定理的叙述与证明定理 :如果不共线向量 a,b,c有公共起点 ,满足 c=λa +μb.那么三个向量的终点在同一直线上的充要条件是λ +μ =1(这里λ,μ∈ R) .证明 :如图 ,设向量 a =OA,b = OB,c =OC.必要性 :如果点 C在直线BC上 ,设 BC =λCA (λ∈ R) ,则BC = λ1+λBA所以 c=b+BC= b +λ1+λBA =b+λ1+λ( a- b) =11+λa +λ1+λb,因此 11+λ+λ1+λ=1.充分性 :如果λ+μ =1,则λ=1-μ,所以 c=( 1-μ) a +μb =a …  相似文献   

3.
人教A版必修四第94页介绍了平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于一平面内的任意向量e1、e2a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.平面向量基本定理指出,平面内任何向量都可以沿两个不共线的方向分解为  相似文献   

4.
平面向量     
☆基础篇诊断检测一、选择题1.下列说法正确的是()(A)平行向量就是与向量所在直线平行的向量.(B)长度相等的向量叫相等向量.(C)零向量的长为0.(D)共线向量是在一条直线上的向量.2.已知向量a与b反向,下列等式成立的是()(A)|a|-|b|=|a-b|.(B)|a+b|=|a-b|.(C)|a|+|b|=|a-b|.(D)|a|+|b|=|a+b|.3.给出下列命题:(1)如果λa=λb(λ≠0),那么a=b.(2)若a0为单位向量,a与a0平行,则a=|a|a0.(3)设a=λ1e1+λ2e2(λ1,λ2∈R),则当e1与e2共线时,a与e1也共线.其中真命题的个数是()(A)0.(B)1.(C)2.(D)3.4.将函数y=x2+4x+5的图象按向量a经过一次平移后,…  相似文献   

5.
向量的主要性质①向量的加法适合向量加法的三角形法则或平行四边形法则,即AB+BC=AC; ②若e1、e2是平面α内非零不共线向量,则对于α内任一向量a,有且只有一对实数λ1λ2,使得a=λ1 e1+λ2 e2成立; ③非零向量a=(x1,y1),b=(x2,y2)的数量积为a·b=x1x2+y1y2; ④设非零向量a=(x1,y1),b=(x2,y2),则a⊥b(?)a·b=x1x2+y1y2=0;  相似文献   

6.
待定系数法是数学中的一种常用解题方法.大家对此都很熟悉,但是对于待定系数法在向量问题中的应用却显得比较生疏.下面举例予以说明.【例1】已知两个非零向量e1、e2不共线,如果AB=2e1 e2,AC=2e1 8e2AD=3e1-3e2,求证:A、B、C、D共面.分析:根据共面向量定理,若存在实数λu使得AB=λAC uAD成立,则易证得结论.证明:若存在实数λ,u使得AB=λAC uAD则e1 e2=λ(2e1 8e2) u(3e1-3e2)=(2λ 3u)e1 (8λ-3u)e2∵两个非零向量e1、e2不共线∴2λ 3u=18λ-3u=1,解得:λ=u=15故∴AB=15AC 15AD,向量AB、ACAD共面,从而A、B、C、D四点共面.图1…  相似文献   

7.
新版高一<数学>(下册)第五章第三节<实数与向量的积>中,介绍了平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任何一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2(此时,e1,e2叫做表示该平面内所有向量的一组基底).  相似文献   

8.
平面向量基本定理 (高中《数学》第一册(下 )第 1 0 6页 ) :如果 e1 ,e2 是同一平面内的两个不共线向量 ,那么对于该平面内的任一向量 a,有且只有一对实数 λ1 ,λ2 ,使 a=λ1 e1+λ2 e2 .(证略 )1 对“定理”的理解( 1 )实数对 ( λ1 ,λ2 )的存在性和惟一性 :平面内任一向量 a均可用给定的一组基底 e1 ,e2 线性表示成 a=λ1 e1 +λ2 e2 ,且这种表示是惟一的 ,其几何意义是任一向量都可沿两个不平行的方向分解为两个向量的和 ,且分解是惟一的 .( 2 )基底的不惟一性 :平面内任意两个向量 ,只要不共线 ,便可作为平面内全体向量的一组基底 .(…  相似文献   

9.
新版高一数学下册第五章《平面向量》第三节《3.2实数与向量的积》一节中,介绍了平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任何一个向量a,有且只有一对实数λ1,λ2,a=λ1e1+λ2e2.(此时,e1、e2叫该平面内所有向量的  相似文献   

10.
定理在△ABC 中,D 在 AB 上 ,AD=λ·AB,BC=a,CA=b,CD=m,则∠C=90°的充要条件是 m~2=λ~2a~2+(1-λ)~2b~2(0<λ<1).证明:设(?)=b,(?)=a,则(?)=a-b.(?)=λ(?)=λ(a-b),(?)=(?)+(?)=λa+(1-λ)b,((?))~2=[λa+(1-λ)b]~2.∴m~2=λ~2a~2+(1-λ)~2b~2+2λ(1-λ)a·b.∠C=90°的充要条件为 a·b=0,即 m~2=λ~2a~2+(1-λ)~2b~2.当λ=1/2,a~2/b~2,a/(a+b)时,CD 分别为 AB 边中线、高  相似文献   

11.
P是△ABC所在平面内一点,由平面向量基本定理,存在唯一有序实数对λ1,λ2,使得:→AP=λ1→AB λ2→AC.得:→AP=λ1 →AB λ2 →AC.  相似文献   

12.
<正>用向量法证明几何问题(未知坐标)时,选用哪两个向量作为基底较合理?一、定理再现如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,存在一对实数λ1,λ2,使a=λ1 e1+λ2 e2。二、定理的认识平面向量基本定理是向量理论中最重要的定理,是向量得以用数量进行计算的桥梁和纽带,是向量理论中的里程碑和标  相似文献   

13.
要学会操作     
数学一册(下)513实数与向量的积中的2.平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1、λ2,使a=λ1e1 λ2e2.一、定理的理解1.实数对(λ1,λ2)的存在性和惟一性:平面内任一向量a均可用给定的一组基底e1,e2线性表示成a=λ1e1 λ2e2,且这种表示是惟一的.2.基底的多样性:平面内任意一组不共线的两个向量都可作为一组基底.3.几何意义:平面内任一向量都可沿两个不平行的方向分解为两个向量的和,且分解是惟一的.二、定理的延伸与拓展1.平面内任一直线型图形,根据平面向量基本定理,…  相似文献   

14.
新版高一数学 (下册 )第五章第三节《实数与向量的积》中 ,介绍了平面两个向量共线定理 :向量 b与非零向量 a共线的充要条件是有且只有一个实数λ,使得b =λa.由此 ,可以得到下列推论 :推论 1   OA、OB是平面内两不共线向量 ,向量OP满足 :OP =a OA +b OB( a,b∈ R) ,则 A、P、B三点共线的充要条件是 a +b =1.证明 :( 1)若 a +b=1,则 A P =OP - OA =( a -1) OA +b OB =b( OB - OA ) =b AB,故 AP与 A B共线 ,从而 A、P、B三点共线 ;( 2 )若 A、P、B三点共线 ,则存在唯一实数λ,使得AP =λAB,即 OP - OA =λ( OB - OA …  相似文献   

15.
众所周知 ,平面向量基本定理可从两个层面上理解 :( 1 )从代数式的角度 ,向量a和两个向量e1,e2 共面的充要条件是a =λ1e1 λ2 e2 ,λ1,λ2 ∈R ;( 2 )从平面几何角度 ,任一向量可在平面内进行任意的分解、组合 .但是 ,笔者认为 ,在完成了向量坐标形式及运算的教学后 ,应该进行如下反思 :1 探究平面向量基本定理的解析本质当然 ,如果我们仅就向量的坐标形式而言 ,该定理仍在上述思考的范畴 .试想 ,任一向量都可视为有向线段 ,那么我们不妨设有向线段P0 P所在的直线为l,方向向量a ,根据平面基本定理a=λ1e1 λ2 e2 ,λ1,λ2 ∈R .设e1=( -…  相似文献   

16.
用余弦定理证明几何命题,常常可以不添或少添辅助线,且思路清晰。现将余弦定理在证明几个著名定理中的应用介绍如下: 1.托勒密定理 在圆内接四边形ABCD中,求证:AC·BD=AB·CD+AD·BC(如图1) 证明 记AB=a,BC=b,CD=c,AD=d,AC=e,BD=f。即证ef=ac+bd。图1 因 cosA=-cosC,应用余弦定理,得  相似文献   

17.
(满分150分,每题50分)1.已知四边形ABCD是圆内接四边形,直线AC,BD相交于P点,并且AADB=CCDB.设E为AC的中点.求证:EEBD=PPDB.2.设a,b,c为正数,记d为(a-b)2,(b-c)2,(c-a)2中的最小数.(1)求证:存在λ(0<λ<1),使得d≤λ(a2+b2+c2);(*)(2)求出使不等式(*)成立的最小正数λ并给予证明.3.已知n个四元集合A1,A2,…,An,每两个有且只有一个公共元,并且有Card(A1∪A2∪…∪An)=n,试求n的最大值.这里Card A为集合A中元素的个数.参考答案图11.由托勒密定理得AB×CD+AD×BC=AC×BD.因为AB×CD=AD×BC,AE=EC,所以有2AB×CD=2AE…  相似文献   

18.
平面向量是解答立体几何问题的一种快速、简捷的运算工具.不少复杂的立体几何问题,引入平面向量后,通过将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值运算,即借助平面使解题模式化,用机械性操作把问题转化,因此,平面向量为立体几何代数化带来了极大的便利.下面,介绍平面向量在立体几何中的应用.例1如图1,AB、CD为异面直线,CD平面α,AB∥平面α,M、N分别是AC、BD的中点,求证:MN∥平面α.证明:因为CD平面α,AB∥平面α且所以在α内存在a、b使AB=a,CD=b,且a、b不共线,由M、N分别是AC、BD的中点,得MN=21(MB…  相似文献   

19.
用平面向量的知识解决某些平面几何问题是向量内容中的难点之一。虽然有些杂志上介绍一些方法 ,但总觉得这些方法不易学到手 ,解决某些问题时 ,成功具有偶然性 ,而且花费很多时间。下面 ,笔者介绍一种操作性较强 ,易于掌握的方法。首先 ,我们复习平面向量中某些常用的知识。由平面向量的基本定理 ,容易得到下面的推论 :设e1与e2 是同一平面内的两个不共线向量 ,若存在常数λ1、λ2 ,使得λ1e1+λ2 e2 =0 ,则λ1=λ2 =0。据向量加减法知识 ,容易得到“插点法” ,即 对于向量AB ,若A、B两点之间插入点P ,有AB =AP +PB ,这种“插点法”使…  相似文献   

20.
平面向量的一个主要应用是解决一些平面几何问题,塞瓦定理和梅涅劳斯定理是平面几何中的两个重要定理,人们自然想到如何利用平面向量的知识证明这两个定理,这里给出一种向量证法. 现将两个定理叙述如下: 塞瓦定理 如图1,设O是△ABC内任意一点,AO,BO,CO分别交对边于D,E,F,则 AF/FB· BD/DC · CE/EA=1.(1) 梅涅劳斯定理 如图1,设一直线与△ADC的边AC,AD及CD延长线分别交于E,O,B,则 AO/OD· DB/BC· CE/EA=1 (2) 为了证明定理,先给出一个简单的引理: 若→OA=λ→ OB+μ→ OC(λ,μ为常数),则A,B,C3点共线的充要条件是λ+μ=1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号