首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physics continues to be widely regarded by students as difficult and therefore unattractive. Electricity is a particular problem, as it involves extremely complex and highly abstract concepts and is thus totally dependent on models/analogies/metaphors. Research consistently shows very poor student understanding after the teaching of electricity. We consider this research and draw two broad conclusions of central relevance to the teaching of electricity (which are both also argued to be significant contributors to student learning difficulties): there is an absence of any systemic consensus about what models etc. are appropriate for students at different year levels and for different intended learning outcomes; there is no consensus about appropriate learning outcomes for electricity at different levels.  相似文献   

2.
Abstract

Analogies are commonly employed in teaching and learning about abstract scientific phenomena such as electricity. There has been extensive research on the effectiveness of a range of analogies in promoting conceptual understanding with respect to the behaviour of simple circuits. Such studies focus on the development of learners’ thinking with respect to the transfer of understanding from the analogy to the target concept. This study attempts to explore what happens to individuals’ learning when analogies break down in the light of practical investigation. It proposes that the honest appraisal of such breakdown can constitute an effective learning tool. The implications for teacher education and classroom practice are discussed.  相似文献   

3.
To provide a good understanding of many abstract concepts in the field of electricity above that of their students is often a major challenge for secondary school teachers. Many educational researchers promote conceptual learning as a teaching approach that can help teachers to achieve this goal. In this paper, we present Physlet-based materials for supporting conceptual learning about electricity. To conduct research into the effectiveness of these materials, we designed two different physics courses: one group of students, the experimental group, was taught using Physlet-based materials and the second group of students, the control group, was taught using expository instruction without using Physlets. After completion of the teaching, we assessed students’ thinking skills and analysed the materials with an independent t test, multiple regression analyses and one-way analysis of covariance. The test scores were significantly higher in the experimental group than in the control group (p < 0.05). The results of this study confirmed the effectiveness of conceptual learning about electricity with the help of Physlet-based materials.  相似文献   

4.
Energy is considered both a core idea and a crosscutting concept in science education. A thorough understanding of the energy concept is thought to help students learn about other (related) concepts within and across science subjects, thereby fostering scientific literacy. This study investigates students’ progression in understanding the energy concept in biological contexts at the transition from primary to lower secondary school by employing a quantitative, cross-sectional study in grades 3–6 (N?=?540) using complex multiple-choice items. Based on a model developed in a previous study, energy concepts were assessed along four aspects of energy: (1) forms and sources of energy, (2) transfer and transformation, (3) degradation and dissipation, and (4) energy conservation. Two parallel test forms (A and B) indicated energy concept scores to increase significantly by a factor of 2.3 (A)/1.7 (B) from grade 3 to grade 6. Students were observed to progress in their understanding of all four aspects of the concept and scored highest on items for energy forms. The lowest scores and the smallest gain across grades were found for energy conservation. Based on our results, we argue that despite numerous learning opportunities, students lack a more integrated understanding of energy at this stage, underlining the requirement of a more explicit approach to teaching energy to young learners. Likewise, more interdisciplinary links for energy learning between relevant contexts in each science discipline may enable older students to more efficiently use energy as a tool and crosscutting concept with which to analyze complex content.  相似文献   

5.
Analogies have been argued to be central in the process of establishing conceptual growth, making overt connections and carryover into an intended cognitive domain, and providing a generative venue for developing conceptual understanding inherent in constructivist learning. However, students' specific uses of analogies for constructing arguments are not well understood. Specifically, the results of preservice teachers' knowledge gains are not widely studied. Although we would hope that engaging preservice science teachers in exemplary lessons would assist them in using and generating analogies more expertly, it is not clear whether or how such curricula would affect their learning or teaching. This study presents an existence proof of how preservice science teachers used analogies embedded in their course materials Physics by Inquiry. This fine‐grained analysis of small group discourse revealed three distinct roles of analogies including the development of: (a) cognitive process skills, (b) scientific conceptual understanding, and (c) social contexts for problem solving. Results suggest that preservice teachers tend to overgeneralize the analogies inserted by curriculum materials, map irrelevant features of analogies into collaborative problem solving, and generate personal analogies, which counter scientific concept development. Although the authors agree with the importance of collaborative problem solving and the insertion of analogies for preservice teachers' conceptual development, we believe much more needs to be understood before teachers can be expected to construct and sustain effective learning environments that rely on using analogies expertly. Implications for teacher preparation are also discussed. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 443–463, 2003  相似文献   

6.
Energy is a central topic in physics and a key concept for understanding the physical, biological and technological worlds. It is a complex topic with multiple connections with different areas of science and with social, environmental and philosophical issues. In this paper we discuss some aspects of the teaching and learning of the energy concept, and report results of research on this issue. To immerse science teaching into the context of scientific culture and of the students’ cultural world, we propose to select specific driving issues that promote motivation for the construction of science concepts and models. We describe the design and evaluation of a teaching learning path developed around the issue of greenhouse effect and global warming. The experimentation with high school students has shown that the approach based on driving issues promotes students’ engagement toward a deeper understanding of the topic and favours further insight. The evolution of students’ answers indicates a progressively more correct and appropriate use of the concepts of heat, radiation, temperature, internal energy, a distinction between thermal equilibrium and stationary non equilibrium conditions, and a better understanding of greenhouse effect. Based on the results of the experimentation and in collaboration with the teachers involved, new materials for the students have been prepared and a new cycle of implementation, evaluation and refinement has been activated with a larger group of teachers and students. This type of systematic and long term collaboration with teachers can help to fill the gap between the science education research and the actual school practice.  相似文献   

7.
As part of a project concerned with developing a better understanding of the detail of appropriate teaching of direct current (DC) electricity concepts, extensive individual interviews were conducted with a number of experienced senior high school physics teachers. These interviews explored teachers’ perceptions of difficulties in student learning and their own teaching of DC electricity, their uses of models and analogies in this teaching, and their own understandings of the concepts of DC electricity. Eight high school physics teachers from the Australian state of Victoria were interviewed: three who had a strong focus on student understanding in their classrooms and five who used more traditional approaches. We also interviewed three authors of textbooks then currently used in senior high school physics in Victoria, all of whom were also teachers of high school physics. All but one of these eleven interviewees was a very experienced teacher of DC electricity at the senior high school level. The interview data are summarized and implications for curriculum and teaching/learning of electricity are considered. There was a wide range of views among the teachers about the difficulties of both the concepts of DC electricity and the teaching of these concepts, and about the nature of physics knowledge. A number of the interviewees revealed levels of conceptual understanding that we see as of concern. Some of the teachers whose understanding causes us concern made clear early in the interview their view that the concepts of DC electricity were essentially straight forward; in all cases these interviewees had by the end of the interview reconsidered this position.  相似文献   

8.
An important contribution to effective teaching and learning can be made by teachers' understanding of the central topics in each subject area and knowing how to transform their content knowledge into knowledge for teaching. One aspect of this knowledge is the use of analogies which can effectively communicate concepts to students of particular backgrounds and prerequisite knowledge. Indeed, analogies are considered to be an important component in the repertoire of effective teachers. However, research about teachers' use of analogies in science lessons provides little guidance about the optimum approaches that may be taken by preservice teachers, novice teachers, experienced teachers or reluctant analogy users. This paper describes the evolution of an approach for using analogies in science teaching that addresses both findings from the research literature and recognises the needs of practising teachers. Specializations: learning and teaching science concepts, technology education.  相似文献   

9.
Abstract

This study assessed 4th, 8th, and 11th grade students' understanding of natural and social science concepts related to pollution. A representative sample of public school students (n = 105) in 11 Maine schools was selected, and students were interviewed on four concept principles considered critical to a full understanding of the pollution problem. The concept of pollution included the much publicized issues of solid and toxic waste as well as air, soil, and water pollution. Research assertions were summarized in generalized correct concept statements indicating the extent of current student knowledge. Common misconceptions were also noted.

This study considered student understanding from a human ecological perspective, that is, as an integrated set or cluster of concepts related to pollution. This reflects a complex, integrated, and multidisciplinary conception of natural phenomena. Human constructivism, meaningful learning theory, and principles related to the relevance of student schema in the design of curriculum and instructional strategies guided this work.

The results of this study have implications for teaching about pollution and the design of science education curriculum materials based upon student knowledge. This information can guide teaching strategies concerning current environmental problems and thus help learners gain an appreciation for the complex and multi-disciplinary nature of science, technology, and society and how they affect the environment.  相似文献   

10.
This study examined the relationships that exist between high school science teachers' understanding of the Piagetian developmental model of intelligence, its inherent teaching procedure—the learning cycle—and classroom teaching practices. The teachers observed in this study had expressed dissatisfaction with the teaching methods they used, and, subsequently, attended a National Science Foundation sponsored in-service program designed to examine laboratory-centered science curricula and the educational and scientific theories upon which the curricula were based. The teachers who exhibited a sound understanding of the Piagetian model of intelligence and the learning cycle were more likely to effectively implement learning cycle curricula. They were able to successfully integrate their students' laboratory experiences with class discussions to construct science concepts. The teachers who exhibited misunderstandings of the Piagetian developmental model of intelligence and the learning cycle also engaged their students in laboratory activities, but these activities were weakly related to learning cycles. For example, the data gathered by their students were typically not used in class discussions to construct science concepts. Therefore, these teachers apparently did not discern the necessity of using the data and experiences from laboratory activities as the impetus for science concept attainment. Additional results comparing degrees of understanding, teaching behaviors and questioning strategies are discussed.  相似文献   

11.
"科学概念"是当今科学教育界关注的焦点问题之一,美国FOSS教材在《美国国家科学教育标准》和《科学素养的基准》两大文件的指导下,宏观上以"理解性地学习科学概念"作为教材编写的指导思想,具体构建了有层次的科学概念的内容体系,并通过观察和实验落实学生科学概念的获得,最后,以符合学生认知水平的表述方式帮助学生理解所学的科学概念。以上这些,都值得我国在编写科学教材时借鉴。  相似文献   

12.
This article reports an interpretive examination of four teachers' use of analogies to teach chemistry. The study describes why the teachers chose to use analogies, how the characteristics of the analogies employed varied from teacher to teacher, and from where the teachers derived their analogies. These teachers used analogies spontaneously, as well as on a planned basis, to explain abstract chemistry concepts both on a whole-class basis and for individual students who indicated a lack of understanding. The teachers appeared able to ascertain that the students required an alternative representation without overtly seeking evidence to this effect. The presented analogies, especially those that were of the simple-comparison type, appeared to have a motivational impact on the students. Several analogies were extended to map selected attributes, and these were believed by the teachers to be powerful explanatory devices. Pictorial analogies were frequently used to enhance analog familiarity, and further analog explanation was not uncommon, although the frequency with which the teachers stated the presence of analogical limitations was low. The article concludes by suggesting how science teacher education can be informed by case studies of teaching in context, in this instance of analogy-inclusive teaching by four experienced chemistry teachers.  相似文献   

13.
The study investigated the impact on student motivation and understanding of magnetism of teaching sequences based on an inductive approach. The study was conducted in large lecture classes. A pre- and post-Conceptual Survey of Electricity and Magnetism was conducted with just fewer than 700 Thai undergraduate science students, before and after being taught the concepts, in three academic years. For 2005 and 2006, overall, the students had a better understanding of concepts associated with electricity, but a majority of the students seemed not to understand magnetism after the teaching. Drawing on these findings, the teaching sequences of the magnetism topic were developed, and then implemented in the academic year 2007. The teaching sequences included demonstrations and visuals to help students infer rules and theories for themselves (inductive method). In addition, interactive notes, information on historical science discoveries about magnetic phenomenon, questions, student discussions, and magnetism problems were used to support student learning during lectures. Students in the academic year 2007 performed significantly better after the teaching. In addition, the students had a positive perception towards the teaching sequences, which allowed them to be involved more actively during lectures.  相似文献   

14.
In many science education practices, students are expected to develop an understanding of scientific knowledge without being allowed a view of the practices and cultures that have developed and use this knowledge. Therefore, students should be allowed to develop scientific concepts in relation to the contexts in which those concepts are used. Since many concepts are used in a variety of contexts, students need to be able to recontextualise and transfer their understanding of a concept from one context to another. This study aims to develop a learning and teaching strategy for recontextualising cellular respiration. This article focuses on students’ ability to recontextualise cellular respiration. The strategy allowed students to develop their understanding of cellular respiration by exploring its use and meaning in different contexts. A pre- and post-test design was used to test students’ understanding of cellular respiration. The results indicate that while students did develop an acceptable understanding of cellular respiration, they still had difficulty with recontextualising the concept to other contexts. Possible explanations for this ack of understanding are students’ familiarity with the biological object of focus in a context, the manner in which this object is used in a context and students’ understanding of specific elements of cellular respiration during the lessons. Although students did develop an adequate understanding of the concept, they do need more opportunities to practice recontextualising the concept in different contexts. Further research should focus on improving the strategy presented here and developing strategies for other core concepts in science.  相似文献   

15.
To aid the explanation of abstract science concepts, authors of textbooks employ learning tools such as analogies to help students learn. Analogies are believed to allow new material to be more easily assimilated with students' prior knowledge by linking it to their previous experiences. Continuing research on analogies in science textbooks and science teaching is providing a clearer picture of the types of analogies that are available (Duit, 1991), their ranges of presentation style (Curtis & Reigeluth, 1984; Thiele & Treagust, 1992), and their efficacy to effect students' conceptual understandings (Harrison & Treagust, 1993).  相似文献   

16.
The teaching of basic electricity uses many circuit diagrams. We present in this paper several experiments which show that no specific teaching about the decoding and understanding of the graphical information contained in these diagrams in made in class. On the contrary teaching reinforces the role of certain types of diagrams (canonical ones) which contribute to the organisation of students’ knowledge in the, form of prototypes. Thus diagrams become autonomous objects unrelated to concepts of electricity they are representing. We will present some experiments in the area of learning about electricity which aim at changing the usual classroom practices. They take into account the naive conceptions of students. Within this framework, graphical representations are used as a support for learning concepts of electricity.  相似文献   

17.
It is important that students of physics develop both quantitative and qualitative understanding of physical concepts and principles. Although accuracy and reliability in solving quantitative problems is necessary, a qualitative understanding is required in applying concepts and principles to new problems and in real-life situations. If students are not able to understand what underlies quantitative problem-solving procedures nor interpret the solution in physical terms, it is questionable whether they have developed an adequate understanding of physics. The research reported here is part of a larger phenomenographic study that is concerned with the assessment of physics students' understanding of some basic concepts and principles in kinematics. In this article students' understanding of the concept of relative speed is described. A variety of ways of understanding relative speed and of viewing a problem that dealt with this concept were uncovered. The results are used to suggest ways for teachers to proceed in assisting students to enhance their understanding of this concept. The teaching principles outlined concern both teaching relative speed, in particular, and teaching scientific concepts and principles, more generally.  相似文献   

18.
This study explored the pedagogical content knowledge (PCK) and its development of four experienced biology teachers in the context of teaching school genetics. PCK was defined in terms of teacher content knowledge, pedagogical knowledge and knowledge of students’ preconceptions and learning difficulties. Data sources of teacher knowledge base included teacher-constructed concept maps, pre- and post-lesson teacher interviews, video-recorded genetics lessons, post-lesson teacher questionnaire and document analysis of teacher's reflective journals and students’ work samples. The results showed that the teachers’ individual PCK profiles consisted predominantly of declarative and procedural content knowledge in teaching basic genetics concepts. Conditional knowledge, which is a type of meta-knowledge for blending together declarative and procedural knowledge, was also demonstrated by some teachers. Furthermore, the teachers used topic-specific instructional strategies such as context-based teaching, illustrations, peer teaching, and analogies in diverse forms but failed to use physical models and individual or group student experimental activities to assist students’ internalization of the concepts. The finding that all four teachers lacked knowledge of students’ genetics-related preconceptions was equally significant. Formal university education, school context, journal reflection and professional development programmes were considered as contributing to the teachers’ continuing PCK development. Implications of the findings for biology teacher education are briefly discussed.  相似文献   

19.
Abstract

This study assessed the level of scientific and natural resource knowledge that fourth-, eighth-, and eleventh-grade students in Maine possess concerning acidic deposition. A representative sample of public school students (N = 175) was interviewed on twelve concept principles considered critical to a full understanding of the acidic deposition problem. These included geological, meteorological, ecological, political, and economic concepts. Student knowledge was rated for each concept principle on a scale of complete, high partial, low partial, or no understanding. Common misconceptions were also noted. Generalized correct concept statements of current student knowledge are reported, as well as generalized missing concepts. Our conclusions have implications for teaching about acidic deposition and the design of environmental education curriculum materials based upon student knowledge. This information can help teachers better instruct students about current environmental problems and thus help learners gain an appreciation for the complex and multidisciplinary nature of science and the environment.  相似文献   

20.
Science instructors and textbook authors often use analogies to help their students use information they already understand to develop an understanding of new concepts. This study reports the results of an analysis of the use of analogies in eight biochemistry textbooks, which included textbooks written for one‐semester survey biochemistry courses for non‐majors; two‐semester courses for chemistry or biochemistry majors; and biochemistry courses for medical school students. We present an analysis of how analogies are used and presented in biochemistry textbooks, and we compare the use of analogies in biochemistry textbooks to the use of analogies in other science textbooks. We also compare the use of analogies in biochemistry textbooks with the factors known to promote spontaneous transfer of attributes and relations from analog concept to target concept. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 43: 1040–1060, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号