首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The start kinematics has been reported to differ between male and female sprinters. This study aimed to determine whether kinematic differences between the sexes are attributable to an effect of sex per se, or rather to the absolute performance level of the sprinters, quantified by the 100-m time. A total of 20 sprinters (10 M, 10 F), including world-class and elite athletes, were assessed. Start phases from the “set” position to the first two steps were analysed. Linear regression analyses showed a few significant differences between sexes when taking into account the effect of performance level: M had shorter pushing phase duration, higher horizontal velocity at block clearing, and shorter contact times of the first two steps. Conversely, the performance level affected most of the examined parameters: faster sprinters showed the centre of mass (CM) closer to the ground and a more flexed front knee in the “set” position, longer pushing phase duration, lower vertical velocity of the CM at block clearing, and longer contact times and shorter flight times in the first two steps. These findings suggest that the start kinematics is only partially affected by the sex of sprinters, whereas a bigger role is played by their performance level.  相似文献   

2.
The incidence of patellofemoral pain (PFP) is 2 times greater in females compared with males of similar activity levels; however, the exact reason for this discrepancy remains unclear. Abnormal mechanics of the hip and knee in the sagittal, frontal, and transverse planes have been associated with an increased risk of PFP. The purpose of this study was to compare the mechanics of the lower extremity in males and females during running in order to better understand the reason(s) behind the sex discrepancy in PFP. Three-dimensional kinematic and kinetic data were collected as male and female participants completed overground running trials at a speed of 4.0 m · s?1 (±5%). Patellofemoral joint stress (PFJS) was estimated using a sagittal plane knee model. The kinematics of the hip and knee in the frontal and transverse planes were also analysed. Male participants demonstrated significantly greater sagittal plane peak PFJS in comparison with the female participants (P < .001, ES = 1.9). However, the female participants demonstrated 3.5° greater peak hip adduction and 3.4° greater peak hip internal rotation (IR). As a result, it appears that the sex discrepancy in PFP is more likely to be related to differences in the kinematics of the hip in the frontal and transverse planes than differences in sagittal plane PFJS.  相似文献   

3.
4.
The initial steps of a sprint are important in team sports, such as rugby, where there is an inherent requirement to maximally accelerate over short distances. Current understanding of sprint acceleration technique is primarily based on data from track and field sprinters, although whether this information is transferable to athletes such as rugby players is unclear, due to differing ecological constraints. Sagittal plane video data were collected (240?Hz) and manually digitised to calculate the kinematics of professional rugby forwards (n?=?15) and backs (n?=?15), and sprinters (n?=?18; 100?m personal best range?=?9.96–11.33?s) during the first three steps of three maximal sprint accelerations. Using a between-group research design, differences between groups were determined using magnitude-based inferences, and within-group relationships between technique variables and initial sprint acceleration performance were established using correlation. Substantial between-group differences were observed in multiple variables. Only one variable, toe-off distance, differed between groups (d?=??0.42 to ?2.62) and also demonstrated meaningful relationships with sprint performance within all three groups (r?=??0.44 to ?0.58), whereby a stance foot position more posterior relative to the centre of mass at toe-off was associated with better sprint performance. While toe-off distance appears to be an important technical feature for sprint acceleration performance in both sprinters and rugby players, caution should be applied to the direct transfer of other kinematic information from sprinters to inform the technical development of acceleration in team sports athletes.  相似文献   

5.
ABSTRACT

Anaerobic performance in youth has received little attention partly due to the lack of a “gold-standard” measurement. However, force-velocity-power (F-v-P) profiling recently showed high reliability and validity in trained adults. Therefore, the aim was to determine the reliability of F-v-P profiling in children and adolescents. Seventy-five children (60 boys, 15 girls; age: 14.1 ± 2.6 years) completed three 30 m sprints. Velocity was measured at 46.875 Hz using a radar device. The F-v-P profile was fitted to a velocity-time curve allowing instantaneous power variables to be calculated. Reliability was assessed using the intra-class correlation coefficient (ICC), coefficient of variation (CV), standard error of measurement (SEM) and smallest worthwhile change (SWC). High reliability was evident for absolute peak (Ppeak) and mean power (Pmean), Ppeak and Pmean expressed relative to body mass, peak and mean velocity, 30 m sprint time, peak horizontal force (F0), relative F0, mechanical efficiency index and fatigue rate (ICC: 0.75–0.88; CV: 1.9–9.4%) with time to peak power demonstrating moderate reliability (ICC: 0.50; CV: 9.5%). The F-v-P model demonstrated at least moderate reliability for all variables. This therefore provides a potential alternative for paediatric researchers assessing sprint performance and the underlying kinetics.  相似文献   

6.
The aim of this study was to determine if selected kinematic measures (foot strike index [SI], knee contact angle and overstride angle) were different between aquatic treadmill (ATM) and land treadmill (LTM) running, and to determine if these measures were altered during LTM running as a result of 6 weeks of ATM training. Acute effects were tested using 15 competitive distance runners who completed 1 session of running on each treadmill type at 5 different running speeds. Subsequently, three recreational runners completed 6 weeks of ATM training following a single-subject baseline, intervention and withdrawal experiment. Kinematic measures were quantified from digitisation of video. Regardless of speed, SI values during ATM running (61.3 ± 17%) were significantly greater (P = 0.002) than LTM running (42.7 ± 23%). Training on the ATM did not change (pre/post) the SI (26 ± 3.2/27 ± 3.1), knee contact angle (165 ± 0.3/164 ± 0.8) or overstride angle (89 ± 0.4/89 ± 0.1) during LTM running. Although SI values were different between acute ATM and LTM running, 6 weeks of ATM training did not appear to alter LTM running kinematics as evidenced by no change in kinematic values from baseline to post intervention assessments.  相似文献   

7.
Abstract

This study investigated the effects of shoe drop on lower limb kinematics and kinetics in female runners.

Fifteen healthy female runners ran on a 15-m runway at their preferred speed with three different shoe-drop conditions: 0 (D0), 6 (D6) and 10 (D10) mm. Three-dimensional marker positions and ground reaction forces were recorded to analyse kinetic and kinematic parameters using zero- (0D) and one-dimensional (1D) metrics (statistical parametric mapping, SPM). Regarding 0D parameters, significantly higher loading rates and transient peaks were found in D0 compared to D6 and D10 conditions (both p?<?.01). For 1D analysis, significantly higher ankle dorsiflexion moments were found in D0 compared to D6 and D10 during the braking phase (p?<?.01). Lower knee extension moments between 52% and 55% and 61% and 65% of contact time (p?<?.05) were also found. No difference was found between D6 and D10 conditions (p?>?.05). As previously shown in men, this study demonstrates that shoe drop influences running kinematic and kinetic patterns. Using SPM analysis in conjunction with classical analysis, the study adds new understanding on the influence of shoes on joint moment during contact time.  相似文献   

8.
Research to enhance running performance has led to the design of a leaf spring-structured midsole shoe (LEAF). In treadmill running, it has been shown that LEAF led to an increased running economy and increased stride length (SL) through a horizontal foot shift during stance compared to a standard foam shoe (FOAM). The purpose of this study was to analyse whether (a) these findings can also be observed in overground running and (b) relations exist between spatio-temporal variables and running economy. Ten male long-distance heel-strike runners ran at their individual 2?mmol/l blood lactate speed with LEAF and FOAM in randomized order. Kinematic data were recorded with an inertial measurement unit synchronized with 2D video. Oxygen consumption was measured using an automated metabolic gas analysis system. Blood lactate was collected after each run. The strike pattern was unaffected by LEAF. SL was increased by 0.9?±?1.1?cm (95% CI 0.2 to 1.5; p?=?.040; dz?=?0.76), stride rate (SR) was reduced by ?0.4?±?0.3?strides/min (95% CI ?0.6 to ?0.1; p?=?.029; dz?=?0.82) and oxygen consumption tended to be reduced by 1% (?0.4?±?0.6?ml/min/kg; 95% CI ?0.8 to 0.0; p?=?.082; dz?=?0.62) when running with LEAF compared to FOAM. Changes in oxygen consumption in LEAF were correlated with SL (r?=?0.71; p?=?.022) and SR (r?=??0.68; p?=?.031). It can be concluded that LEAF has the potential to cause small changes in spatio-temporal variables during running. Runners increasing SL and decreasing SR in response to LEAF can achieve small improvements in running economy, which is beneficial in terms of performance.  相似文献   

9.
Team handball is a popular sport worldwide that requires numerous throws to be made throughout the course of a game. Because of the upper extremity demands of repetitive throwing, it is possible that fatigue can alter the mechanics of a shot. The purpose of this study was to determine the influence of localised fatigue on jump shot kinematics and kinetics. Eleven male team handball players (23.1 ± 3.1 years; 185.1 ± 8.3 cm; 89.7 ± 12.2 kg) volunteered. An electromagnetic tracking system was used to examine the jump shot prior to and following localised fatigue. The fatiguing protocol consisted of throwing a 2.2 kg medicine ball into a rebounder until volitional fatigue. No significant kinematic or kinetic differences were observed following fatigue. Shoulder external rotation was ?74.8 ± 14.9° prior to and ?79.0 ± 14.7° following fatigue at MER. Scapula, external rotation at ball release (BR) prior to fatigue was ?2.2 ± 7.0° and ?3.2 ± 11.1° following fatigue. Scapular internal rotation, at maximum shoulder internal rotation (MIR), changed from 18.4 ± 11.2° to 20.4 ± 11.8°. Ball velocity decreased from19.8 m · s–1 to 18.8 m · s–1 (P = 0.12). Accuracy percentage in the pre-fatigue trials was 60.8 ± 14.1% and 52.8 ± 12.7% following fatigue (P = 0.20). While no significant changes were observed, it is possible that other fatiguing protocols that more closely represent the aerobic and throwing demands of the sport may have a greater effect on the kinematics and kinetics of the jump shot.  相似文献   

10.
Abstract

Resisted sled towing is a popular and efficient training method to improve sprint performance in adults, however, has not been utilised in youth populations. The purpose therefore was to investigate the effect of resisted sled towing training on the kinematics and kinetics of maximal sprint velocity in youth of different maturation status. Pre- and post-intervention 30 metre sprint performance of 32 children, 18 pre-peak height velocity (PHV) and 14 mid-/post-PHV, were tested on a non-motorised treadmill. The 6-week intervention consisted of ~12 sessions for pre-PHV and 14 for mid-/post-PHV of resisted sled towing training with each sessions comprised of 8–10 sprints covering 15–30 metres with a load of 2.5, 5, 7.5 or 10% body mass. Pre-PHV participants did not improve sprint performance, while the mid-/post-PHV participants had significant (P < 0.05) reductions (percent change, effect size) in sprint time (?5.76, ?0.74), relative leg stiffness (?45.0, ?2.16) and relative vertical stiffness (?17.4, ?0.76) and a significant increase in average velocity (5.99, 0.76), average step rate (5.65, 0.53), average power (6.36, 0.31), peak horizontal force (9.70, 0.72), average relative vertical forces (3.45, 1.70) and vertical displacement (14.6, 1.46). It seems that sled towing may be a more suitable training method in mid-/post-PHV athletes to improve 30 metre sprint performance.  相似文献   

11.
The aim of this study was to investigate the effects of strengthening and stretching exercises on running kinematics and kinetics in older runners. One hundred and five runners (55–75 years) were randomly assigned to either a strengthening (n = 36), flexibility (n = 34) or control (n = 35) group. Running kinematics and kinetics were obtained using an eight-camera system and an instrumented treadmill before and after the eight-week exercise protocol. Measures of strength and flexibility were also obtained using a dynamometer and inclinometer/goniometer. A time effect was observed for the excursion angles of the ankle sagittal (P = 0.004, d = 0.17) and thorax/pelvis transverse (P < 0.001, d = 0.20) plane. Similarly, a time effect was observed for knee transverse plane impulse (P = 0.013, d = 0.26) and ground reaction force propulsion (P = 0.042, d = ?0.15). A time effect for hip adduction (P = 0.006, d = 0.69), ankle dorsiflexion (P = 0.002, d = 0.47) and hip internal rotation (P = 0.048, d = 0.30) flexibility, and hip extensor (P = 0.001, d = ?0.48) and ankle plantar flexor (P = 0.01, d = 0.39) strength were also observed. However, these changes were irrespective of exercise group. The results of the present study indicate that an eight-week stretching or strengthening protocol, compared to controls, was not effective in altering age-related running biomechanics despite changes in ankle and trunk kinematics, knee kinetics and ground reaction forces along with alterations in muscle strength and flexibility were observed over time.  相似文献   

12.
13.
The effects of treadmill running on impact acceleration were examined together with the interaction between running surface and runner's fatigue state. Twenty recreational runners (11 men and 9 women) ran overground and on a treadmill (at 4.0 m/s) before and after a fatigue protocol consisting of a 30-minute run at 85% of individual maximal aerobic speed. Impact accelerations were analysed using two lightweight capacitive uniaxial accelerometers. A two-way repeated-measure analysis of variance showed that, in the pre-fatigue condition, the treadmill running decreased head and tibial peak impact accelerations and impact rates (the rate of change of acceleration), but no significant difference was observed between the two surfaces in shock attenuation. There was no significant difference in acceleration parameters between the two surfaces in the post-fatigue condition. There was a significant interaction between surface (treadmill and overground) and fatigue state (pre-fatigue and post-fatigue). In particular, fatigue when running overground decreased impact acceleration severity, but it had no such effect when running on the treadmill. The effects of treadmill running and the interaction need to be taken into account when interpreting the results of studies that use a treadmill in their experimental protocols, and when prescribing physical exercise.  相似文献   

14.
The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6?min?mile?1) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.  相似文献   

15.
Abstract

To develop a track version of the maximal anaerobic running test, 10 sprint runners and 12 distance runners performed the test on a treadmill and on a track. The treadmill test consisted of incremental 20-s runs with a 100-s recovery between the runs. On the track, 20-s runs were replaced by 150-m runs. To determine the blood lactate versus running velocity curve, fingertip blood samples were taken for analysis of blood lactate concentration at rest and after each run. For both the treadmill and track protocols, maximal running velocity (v max), the velocities associated with blood lactate concentrations of 10 mmol · l?1 ( v 10 mM) and 5 mmol · l?1 ( v 5 mM), and the peak blood lactate concentration were determined. The results of both protocols were compared with the seasonal best 400-m runs for the sprint runners and seasonal best 1000-m time-trials for the distance runners. Maximal running velocity was significantly higher on the track (7.57 ± 0.79 m · s?1) than on the treadmill (7.13 ± 0.75 m · s?1), and sprint runners had significantly higher v max, v 10 mM, and peak blood lactate concentration than distance runners (P<0.05). The Pearson product – moment correlation coefficients between the variables for the track and treadmill protocols were 0.96 (v max), 0.82 (v 10 mM), 0.70 (v 5 mM), and 0.78 (peak blood lactate concentration) (P<0.05). In sprint runners, the velocity of the seasonal best 400-m run correlated positively with v max in the treadmill (r = 0.90, P<0.001) and track protocols (r = 0.92, P<0.001). In distance runners, a positive correlation was observed between the velocity of the 1000-m time-trial and v max in the treadmill (r = 0.70, P<0.01) and track protocols (r = 0.63, P<0.05). It is apparent that the results from the track protocol are related to, and in agreement with, the results of the treadmill protocol. In conclusion, the track version of the maximal anaerobic running test is a valid means of measuring different determinants of sprint running performance.  相似文献   

16.
Abstract

Non-motorised underwater treadmills are commonly used in fitness activities. However, no studies have examined physiological and biomechanical responses of walking on non-motorised treadmills at different intensities and depths. Fifteen middle-aged healthy women underwent two underwater walking tests at two different depths, immersed either up to the xiphoid process (deep water) or the iliac crest (shallow water), at 100, 110, 120, 130 step-per-minute (spm). Oxygen consumption (VO2), heart rate (HR), blood lactate concentration, perceived exertion and step length were determined. Compared to deep water, walking in shallow water exhibited, at all intensities, significantly higher VO2 (+13.5%, on average) and HR (+8.1%, on average) responses. Water depth did not influence lactate concentration, whereas perceived exertion was higher in shallow compared to deep water, solely at 120 (+40%) and 130 (+39.4%) spm. Average step length was reduced as the intensity increased (from 100 to 130 spm), irrespective of water depth. Expressed as a percentage of maximum, average VO2 and HR were: 64–76% of peak VO2 and 71–90% of maximum HR, respectively at both water depths. Accordingly, this form of exercise can be included in the “vigorous” range of exercise intensity, at any of the step frequencies used in this study.  相似文献   

17.
The purpose of this study was to investigate the changes in selected biomechanical variables in 80-m maximal sprint runs while imposing changes in step frequency (SF) and to investigate if these adaptations differ based on gender and training level. A total of 40 athletes (10 elite men and 10 women, 10 intermediate men and 10 women) participated in this study; they were requested to perform 5 trials at maximal running speed (RS): at the self-selected frequency (SFs) and at SF ±15% and ±30%SFs. Contact time (CT) and flight time (FT) as well as step length (SL) decreased with increasing SF, while kvert increased with it. At SFs, kleg was the lowest (a 20% decrease at ±30%SFs), while RS was the largest (a 12% decrease at ±30%SFs). Only small changes (1.5%) in maximal vertical force (Fmax) were observed as a function of SF, but maximum leg spring compression (ΔL) was largest at SFs and decreased by about 25% at ±30%SFs. Significant differences in Fmax, Δy, kleg and kvert were observed as a function of skill and gender (P < 0.001). Our results indicate that RS is optimised at SFs and that, while kvert follows the changes in SF, kleg is lowest at SFs.  相似文献   

18.
Coaches teach proper mechanics at a young age in an effort to increase pitching efficiency (i.e., proper pitching mechanics). Unfortunately, the mechanics taught to beginning pitchers are based on the findings from adult pitchers and may result in techniques that are detrimental to younger pitchers. The purpose of this study was to compare kinematics published for pitchers across various ages in an effort to determine whether the pitching techniques vary across developmental periods. A meta-analysis of papers published describing pitching kinematics for youth and adult pitchers was conducted. Maximal rotational velocity of the trunk and maximum external rotation of the shoulder were observed during the arm cocking phase. Peak magnitudes for abduction, horizontal adduction, and shoulder internal rotation were observed during the deceleration phase of the movement. In addition, by comparing previously published data across youth and adult pitchers, valuable insight into the differences in mechanics was gained. The results demonstrated that there are some distinct differences between youth and adult pitching mechanics. This finding may allow increased focus to be applied to those parameters observed to differ across age, increasing the knowledge base available for coaches to properly instruct youth pitchers.  相似文献   

19.
In this study, we examined the consequences of a global alteration in running technique on running kinematics and running economy in triathletes. Sixteen sub-elite triathletes were pre and post tested for running economy and running kinematics at 215 and 250?m?·?min?1. The members of the treatment group (n = 8) were exposed to 12 weeks of instruction in the “pose method” of running, while the members of the control group (n = 8) maintained their usual running technique. After the treatment period, the experimental group demonstrated a significant decrease in mean stride length (from 137.25?±?7.63?cm to 129.19?±?7.43?cm; P <?0.05), a post-treatment difference in vertical oscillation compared with the control group (6.92?±?1.00 vs. 8.44?±?1.00?cm; P <?0.05) and a mean increase in submaximal absolute oxygen cost (from 3.28?±?0.36?l?·?min?1 to 3.53?±?0.43?l?·?min?1; P <?0.01). The control group exhibited no significant changes in either running kinematics or oxygen cost. The global change in running mechanics associated with 12 weeks of instruction in the pose method resulted in a decrease in stride length, a reduced vertical oscillation in comparison with the control group and a decrease of running economy in triathletes.  相似文献   

20.
ABSTRACT

Although polo is a well-known equestrian sport, it is fundamentally misunderstood. The purpose of this study was to examine trunk and upper extremity kinematics and segmental velocities during the offside forehand polo swing between male and female athletes. Ten female and 17 male professional polo athletes volunteered. An electromagnetic tracking system collected kinematic data at 100 Hz while participants performed three offside forehand polo swings from a stationary wooden horse. One-way ANOVAs revealed statistically significant differences (p<0.05) in all kinematic variables and segmental velocities. Specifically, males exhibited a greater mean difference (MD=23°) of trunk flexion at take away (TA) and top of backswing (TOB)(MD=29°) trunk lateral flexion at ball contact (BC)(MD=23°), trunk rotation at TA(MD=97°) and TOB(MD=118°), shoulder abduction at TOB(MD=64°), and shoulder elevation at TOB(MD=13°) and BC(MD=40°). Females displayed greater trunk rotation at BC(MD=91°), shoulder elevation at TA(MD=19°), and elbow flexion at TA(MD=90°). Additionally, females generated greater segmental velocities early in the swing, while the males generated velocity later. The movement patterns observed amongst the males suggest energy is being transferred more efficiently along the kinetic chain, thus more efficient swing mechanics, but further investigation into the role of the trunk and lumbopelvic-hip complex in reference to the polo swing is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号