首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设a,b,c,Δ与a′,b′,c′,Δ′分别代表△ABC与△A′B′C′的三边与面积,则著名的Pedoe不等式是: a′~2(-a~2+b~2+c~2)+b′~2(a~2-b~2+c~2)+c′~2(a~2+b~2-c~2)≥16ΔΔ′,式中等号当且仅当△ABC∽△A′B′C′时成立。文[1]证明了: 设△.表示a~(1/2),b~(1/2),c~(1/2)组成的三角形的面积,则有  相似文献   

2.
在选择题中常能见到如下一类的判定三角形形状的问题。例1 在△ABC中有(a~3+b~3-c~3)/(a+b-c)=c~2且sinAsinB=3/4,则△ABC必定是( ) (A)等腰三角形 (B)直角三角形 (C)等边三角形 (D)等腰三角形或直角三角形。例2在△ABC中有(cosA+2cosC)/(cosA+2cosB)=sinB/sinC,则△ABC是( ) (A)等腰三角形 (B)直角三角形  相似文献   

3.
a+b+c=0(a,b,c∈R),有许多简捷、优美的结论,且有着广泛的用途.结论1 若 a+b+c=0,则 b~2≥4ac 或a~2≥4bc 或c~2≥4ab.证明:因为 a+b+c=0,所以 b=-(a+c),b~2=(a+c)~2=a~2+c~2+2ac≥2ac+2ac=4ac,即 b~2≥4ac.同理可得,a~2≥4bc,c~2≥4ab.结论2 若 a+b+c=0,则 a~3+b~3+c~3=3abc.证明:因为 a+b+c=0,所以 a+b=-c,(a+b)~3=-c~3,即 a~3+3a~2b+3ab~2+b~3+c~3=0,也即 a~3+3ab·(a+b)+b~3+c~3=0,又 a+b=-c,所以 a~3+b~3+c~3  相似文献   

4.
和面积在平面几何中的地位相当,体积在立体几何中也有一番妙用。举例说明如下。一利用体积求点到平面的距离例1 长方体ABCD-A_1B_1C_1D_1中,AB=a,BC=b,BB_1=c,求顶点B_1到截面A_1BC_1的距离。解由题设,长方体AC_1中,AB=a,BC=b,BB_1=c, ∴A_1B=(a~2+c~2)~(1/2),BC_1=(b~2+c~2)~(1/2),A_1C_1=(a~2+b~2)~(1/2) 故cos∠BA_1C_1=((A_1B)~2+(A_1C_1)~2-(BC_1)~2)/(2A_1B·A_1C_1)=(a~2+c~2+a~2+b~2-b~2-c~2)/(2((a~2+c~2)~(1/2))·(a~2+b~2)~(1/2))=(a~2)/((a~2+c~2)~(1/2)·(a~2+b~2)~(1/2))sin∠BA_1C_1=(1-(a~4)/(a~2+c~2)(a~2+b~2))~(1/2)=(a~2b~2+b~2c~2+c~2a~2)~(1/2)/((a~2+c~2)~(1/2)·(a~2+b~2)~(1/2))  相似文献   

5.
正弦定理和余弦定理是架起三角形边角关系的两座桥梁,是解三角形的两个有力武器,锐不可当.重点难点1.正弦定理:a/(sinA)=b/(sinB)=c/(sinC)=2R(R表示△ABC外接圆的半径).2余弦定理:a~2=b~2+c~2-2bccosA;b~2=c~2+a~2-2cacosB:c~2=a~2+b~2-2abcosC.3.三角形面积公式:S=1/2ah_a(h_a  相似文献   

6.
设△ABC和△A′B′C′的边长分别为a、b、c和a′、b′、c′,它们的面积记为△和△′,则a′~2(-a~2+b~2+c~2)+b′~2(a~2-b~2+c~2)+c′~2(a~2+b~2-c~2)≥16△△′(1)这个不等式称为匹窦(Pedoe)不等式。  相似文献   

7.
三角形既可以按边分类也可以按角分类,当我们得到了它们的边(角)之间的关系或最大角的度数时,就能据此判定三角形的形状.下面向大家介绍判断三角形形状的多种方法,相信对开拓同学们的思维,提高解题技能和技巧会有一定的帮助.一、利用因式分解进行判定例1在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,a~2+2ab=c~2+2bc,试判定△ABC的形状.解析∵a~2+2ab=c~2+2bc,a~2-c~2+2ab-2bc=0,即(a-c)(a+c)+2b(a-c)=0,  相似文献   

8.
方程ax~2 bx c=0的判别式△=b~2-4ac及运用判别式求解一类范围题早被人们熟知。在三角方程asinx bcosx=c中,高中代数第二册P.31给出了它的有解条件|c/(a~2 b~2)~(1/2)|≤1。我们容易从有解条件中得到a~2 b~2-c~2≥0,仿一元二次方程,我们引出符号△=a~2 b~2-c~2,并把它称为三角方程asinx bcosx=c的判别式。容易证明:方程asinx bcosx=c,x∈[0,2π),当 i)△>0时,有两不等实根;ii)△=0时,有唯一实根;iii)△<0时,无实根。 u=cosx, 略证如下{ x∈[0,2π) v=sinx,  相似文献   

9.
进行式的恒等变形时,常用到下面的技巧。一、同加、同减例(1) 已知(a+b)~2=7,(a-b)~2=3,求a~4+b~4的值。解:将(a+b)~2=7,(a-b)~2=3两式分别相加、相减得: 2(a~2+b~2)=10,4ab=4。即 a~2+b~2=5,ab=1 ∴ a~4+b~4=(a~2+b~2)~2-2a~2b~2=5~2-2×1~2=23。例(2) 设a>0,b>0,a~2+b~2=7ab,求证: lg[1/3(a+b)]=1/2(lga+lgb)。解:a~2+b~2=7ab等式两边同加上2ab得: (a+b)~2=9ab。即((a+b)/3)~2=ab,  相似文献   

10.
在对含有多个字母的代数式进行变形时,适当地确立一个字母作“元”。并按这个“元”来分析,可使一些数学问题得到规范化和简单的解法。一分解因式中按元分组 [例1] 把a~4(b-c) b~4(c-a) c~4(a-b)分解因式略解:原式=(b-c)a~4 (c~4-b~4)a bc(b~3-c~3)<以a为元> =(6-c)(a~4-ab~3-ac~3-abc~2-ab~2c b~3c bc~3 b~2c~2) =(6-c)[(c-a)b~3 (c~2-ac)b~2 (c~3-ac~2)b (a~4-ac~3)]<以6为元> =(6-c)(c-a)(b~3 cb~2 c~2b-a~3-ac~23-a~2c)  相似文献   

11.
一、判断三角形的形状例1已知a、b、c分别是△ABC的三条边,且a~2+ac=b~2+bc,试判断△ABC的形状.解析:由a~2+ac=b~2+bc.得a~2- b~2+ac-bc=0.将此式的左边分解因式,得(a-b)(a+b+c)=0.因为a、b、c是△ABC的三条边.所以a+b+b>0.故a-b=0.从而a=b,于是△ABC是等腰三角形.  相似文献   

12.
在《由基本不等式“a~2+b~2≥2ab”想到的》(见本刊1989年第4期)一文中给出了以下猜想(即原文的命题19): 命题1 设a,b,c为正数,则 (1) a~5+b~+c~5≥a~8bc+ab~8c+abc~8; (2) a~n+b~n+c~n≥a~pb~qc~r+a~qb~rc~p+a~rb~pc~q。其中n∈N,p,q,r为非负整数,且p+q+r=n。我们首先证明这一猜想是成立的。证明 (1)用两种方法证。证法1 由(a~3-b~3)(a~2-b~2)≥0得 a~5+b~5≥a~3b~2+a~2b~3同理 b~5+c~5≥b~3c~2+b~2c~3, c~5+a~5≥c~3a~2+c~2a~3。以上三个不等式相加,并注意到b~2+c~2≥2bc,c~2+a~2≥2ca,a~2+b~2≥2ab,有 2(a~5+b~5+c~5)≥a~3(b~2+c~2)+b~3(c~2+a~2)+c~3(a~2+b~2)≥2a~3bc+2b~3ca+2c~3ab,  相似文献   

13.
已知方程 asinx+bcosx=c。①其中a、b、c都是给定的实数,且a、b不同时为零,x∈[x_0,x_0+2π),x_0是任一固定常数。设△=a~2+b~2-c~2,则当△>0时,方程①有两个不相等的实数根; 当△=0时,方程①有两个相等的实数根; 当△<0时,方程①没有实数根; 证明∵a、b不同时为零, ∴(a~2+b~2)~(1/2)≠0。∴sin(x+φ)=C/((a~2+b~2)~(1/2))。②(其中φ是辅助角,a≠0时,tgφ=b/a;b≠0  相似文献   

14.
余弦定理和正弦定理一样,是揭示三角形边角之问的数量关系的重要定理。直接运用余弦定理解三角形,可以解决两类问题:1.已知三角形的三边,求三个内角;2.已知三角形的两边和一夹角,求第三边,然而余弦定理的应用远不止这些,它有着广泛的应用。本文通过例举它的五个比较定型的变式及其应用,来领略其在解题尤其是解竞赛题中“短、平、快”的作用。变式Ⅰ: a~2-(2bcosC)a+(b~2-c~2)=0,  相似文献   

15.
题求证:在△ABC中,cosA cosB cosC≤3/2.分析1这是一道常见题,会想到应用余弦定理,把角转化为边进行证明.在△ABC中,cosA=(b~2 c~2-a~2)/(2bc),cosB=(a~2 c~2-b~2)/(2ac),cosC=(a~2 b~2-c~2)/(2ab),  相似文献   

16.
正试题呈现设anc且a+b+c=1,a~2+b~2+c~2=1,求a+b的取值范围.文[1]中采用构造方程的方法,将问题转化为根的分布问题,去除技巧,解法自然,不失为好方法.但观察式子中的变量a,b,c,如果将其中的a,b看作变量,c看作常量的话,将式子变形为a+b=1-c,a~2+b~2=1-c~2,考虑到方程有解,直接将问题转化为给定范围内解决直线与圆相交问题.另解:由abc,得1=a+b+c3c,故c1/3①;若存在a,b满足a+b+c=1,a~2+b~2+c~2=1,则圆心(O,O)到直线的距离d=|c-1|/2~(1/2)  相似文献   

17.
讨论下述课题;中心在原点,焦点在X轴上的椭圆方程为x~2/a~2+y~2/b~2=1设点p(x,y)是椭圆上的一点;且随圆(1)的顶点排除在外,很显然,任意选择椭圆中的两个顶点,并与点p(x,y)连结,都能构成三角形,指出这些三角形面积的性质.同样的,对于共轭双曲线x~2/a~2-y~2/b~2=1,-x~2/a~2+y~2/b~2=1也有相应结果.  相似文献   

18.
我们知道,对于任意两个正实数a、b恒有不等式:a~(a-b)≥b~(a-b)(※)成立。本文利用这一不等式给出几个难度较大的不等式的简洁证明。例1 已知a、b、c∈R~+,求证: a~(2a)b~(2b)c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b)(1978年上海市中学数学竞赛试题) 证明由(※)得 a~(a-b)≥b~(a-b),b~(b-a)≥c~(b-c),c~(c-a)≥a~(c-a)。以上不等式两边分别相乘得 a~(a-b)·b~(b-c)·c~(c-a)≥b~(a-b)·c~(b-c)·a~(c-a)。整理得:a~(2a)·b~(2b)·c~(2c)≥a~(b+c)·b~(a+c)·c~(a+b) 例2 设a、b、c∈R~+.求证: a~ab~bc~c≥(abc)(a+b+c)/3(1974年美国第三届奥林匹克竞赛试题)。证明由例1知  相似文献   

19.
正公式(a+b)~2=a~2+2ab+b~2和(a-b)~2=a~2-2ab+b~2统称为完全平方公式.熟练地掌握了这两个公式的应用后,在学习中,还应注意它们的三种变形及其应用.一、逆向变形a~2+2ab+b~2=(a+b)~2,a~2-2ab+b~2=(a-b)~2.例1计算999×999+1999.  相似文献   

20.
费马(Fermat)定理:p是一奇素数,那么存在两整数a和b使得p=a~2+b~2成立的充分必要条件是p≡1(mod4).若p≡1(mod4),则p可唯一写成a~2+b~2(不区分b~2+a~2与(-a)~2+(-b)~2这两种形式)。证明:如p=a~2+b~2,那么p=a~2+b~2(mod4),而a~2、b~2均同余于0~2,1~2,2~2,3~2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号