首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
当今高考数学命题注重知识的整体性和综合性,重视知识的交汇性.向量是新课程中新增的内容,具有代数与几何形式的双重身份,它是新、旧知识的一个重要交汇点,成为联系这些知识的桥梁.向量与三角函数的交汇是当今高考命题的必然趋势,以下几例,重在为备考中的考生总结题型规律,探究解题策略.一、向量与三角函数性质的交汇例1已知向量a=(cos3x2,sin3x2),b=(cosx2,-sinx2),且x[0,π2].求:(1)a·b及|a+b|;(2)若f(x)=a·b-2λ|a+b|的最小值是-32,求λ的值.解(1)a·b=cos3x2·cosx2-sin3x2·sinx2=cos2x.|a+b|=(cos3x2+cosx2)2+(sin3x2-sinx2)2…  相似文献   

2.
对于某些三角问题 ,若能合理地构造向量 ,利用向量来解 ,往往可使问题得到快捷方便地解决 ,下面举例说明 .一、求角度【例 1】 若α、β∈ ( 0 ,2 ) ,求满足cosα+cosβ-cos(α + β) =32 的α ,β的值 .解 :原等式化为( 1 -cosβ)cosα+sinβsinα =32 -cosβ ①构造向量a =( 1 -cosβ ,sinβ) ,b =(cosα ,sinα) ,则a·b =( 1 -cosβ)cosα+sinβsinα=32 -cosβ ,|a|·|b|= ( 1 -cosβ) 2 +sin2 β· cos2 α+sin2 α= 2 -2cosβ因 (a·b) 2 ≤|a|2 ·|b|2 ,于是有 ( 32 -cosβ) 2 ≤ 2 -2cosβ整理得 (cosβ-12 ) 2 ≤ 0 ,∴c…  相似文献   

3.
向量作为一种工具在解题中的应用极广,巧用公式a·b≤a·b解题,方法新颖、运算简捷.本文举例说明该公式的应用.1在求值中的应用例1若α,β∈(0,π),求满足等式cosα+cosβ-cos(α+β)=23的α,β的值.解原等式可化为(1-cosβ)cosα+sinβsinα=32-cosβ.构造向量a=(1-cosβ,sinβ),b=(cosα,sinα),则a·b=(1-cosβ)2+sin2β·cos2α+sin2α=2-2cosβ,a·b=(1-cosβ)cosα+sinβsinα=32-cosβ.因为(a·b)2≤a2b2,所以(23-cosβ)2≤2-2cosβ,即(cosβ-12)2≤0,所以cosβ=21,β=3π.又α,β地位相同,故α=3π,即α=β=3π.2在求最值和值域中的…  相似文献   

4.
不等式证明既是高中数学的重点,也是高中数学的难点。化归函数法、放缩法是技巧性较高的不等式证明方法.一、化归函数法例1、已知a,b,c,d∈R,且a2+b2=1,c2+d2=1求证:-14FabcdF41分析:将已条件与sin2α+cos2α=1进行对照,可知本题能通过换元将原不等式问题转化为三角函数求值域的问题来解决.证明:设a=sinα,b=cosα,c=sinβ,d=cosβ]|abcd|=|sinα·cosα·sinβ·cosβ|=14|sin2α·sin2β|F14|sin2α|·|sin2β|F41]-14FabcdF41例2、求证:|a|+|b|1+|a|+|b|E1+|a|+a+b|b|分析:认真观察原不等式两边,不难发现它们…  相似文献   

5.
当今高考数学命题注重知识的整体性和综合性,重视知识的交汇性,向量是新课程新增内容,具有代数与几何形的双重身份·它是新旧知识的一个重要的交汇点,向量与三角的交汇是当今高考命题的一个热点·一、向量与三角函数性质的沟通向量的坐标形式中,我们可以用三角函数来表示,这是向量和三角沟通的一个渠道,此时通过向量的数量积和模我们可以构造三角函数,从而解决三角函数的性质·例1已知向量→a=(cos32x,sin32x),→b=(cos2x,-sin2x),且x∈[0,π2],求:①→a·→b及|→a →b|;②若f(x)=→a·→b-2λ|→a →b|的最小值是-23,求λ的值·分析:①→a…  相似文献   

6.
新课程教材中增加了向量的内容,其中两个向量的数量积有一个性质:a·b=|a·b|cos(其中为向量a与b的夹角),则|a·b|=||a·||b|cos|,又-1≤cos≤1,则可得不等关系式:①a·b≤|a·||b|;②|a·b|≤|a·||b|;③|a·b|2≤|a|·2|b|2.而利用这些不等关系式,可使证明某些不等式,绕过魔幻般的配凑技巧,而得以简证.利用以上不等关系式证明,关键是构造恰当的向量,主要有两种方式,下面加以介绍.一、直接构造直接构造是指直接构造a·b或|a·b|或|a·b|2为不等式的一边,再利用不等关系式a·b≤|a·||b|等即可解决.例1已…  相似文献   

7.
题目:已知sin2α=a,cos2α=b,则 tan(α+π4)的值是(  ) (A)b1-a(B)1+ab (C)1+a+b1+b-a(D)a-b+1a+b-1 解法(一):tan(α+π4)=1+tanα1-tanα =sinα+cosαcosα-sinα=cos2α-sin2α(cosα-sinα)2=cos2α1-sin2α =b1-a.故选(A) 解法(二):tan(α+π4)=1+tanα1-tanα =sinα+cosαcosα-sinα=(sinα+cosα)2cos2α-sin2α=1+sin2αcos2α …  相似文献   

8.
一、利用三角函数的性质求最值1.若函数形如y=asinx+b(或y=acosx+b),可直接利用函数的下列性质来求解:|sinx|≤1,|cosx|≤1.例1求函数y=sin(x-π6)cosx的最值.解析y=sin(x-π6)cosx=12[sin(2x-π6)-sinπ6]=12sin(2x-π6)-41.当sin(2x-π6)=1时,ymax=21-14=41;当sin(2x-π6)=-1时,ymin=-21-41=-43.2.若函数形如y=acssiinnxx++db(或y=acccoossxx++db),先逆向解得sinx(或cosx)的表达式,再结合性质|sinx|≤1(或|cosx|≤1)来求解.例2求函数y=8cos2x+83cos2x+1的最值.解析由原式逆向解得cos2x=38y--y8,由0≤cos2x≤1,得0≤8-y3y-8≤1,解…  相似文献   

9.
高等数学初等化问题,已成为高考数学试题发展的新趋势,它给师生带来了新的思维挑战.本文就这方面问题作如下归纳:计算条件初等化例1:若两个向量a!,b"的夹角为θ,则称向量“a!×b"”为“向量积”,其长度|a!×b"|=|a!|·|b"|·sinθ.今已知|a!|=1,|b"|=5,|a!×b"|=|a!|·|b"|·sinθ=3,则a!·b"=_____.解:由“向量积”的定义可知|a!×b"|=|a!|·|b|·sinθ=3,带入条件有sinθ=53,且θ∈[0,π],所以cosθ=±54.所以a!·b"=|a!|·|b"|·cosθ=±4.例2:若定义运算ca bd=ad-bc,则符合条件1-1Z Zi=4+2i的复数Z为().A.3…  相似文献   

10.
公式“sin2α+cos2α=1”是高中三角函数问题中一个十分重要的公式,它是同角三角函数基本关系式之一,具有十分广泛的应用.在解决三角问题时,如能活用该公式,充分挖掘其潜在功能,往往可以推陈出新,给人以耳目一新的感觉.一、三角函数式的化简例1化简1-sin6α-cos6αsin2α-sin4α.解1-sin6α-cos6αsin2α-sin4α=1sin2αcos2α-sin2α+cos2αsin2αcos2α×(sin2α+cos2α)2-3sin2αcos2αsin2αcos2α=1-(1-3sin2αcos2α)sin2αcos2α=3.二、用公式求值例2已知sinθ+cosθ=15,θ(0,π),则cotθ=_____.解∵sin2θ+cos2θ=1,∴(sinθ+cos…  相似文献   

11.
三角函数中的公式特别多,选取不同的公式,解题的途径就会有很多.平面向量具有一套运算法则,它可把几何图形的性质转化为向量运算,变抽象的逻辑推理为具体的向量运算,实现“数与形”的结合.我们在做题的同时,力求从不同的途径获得多种解法,开拓思维,有利于深刻理解问题的本质.例1已知sin2θ=35,而且0<θ<4π,试求2cos2s2in2θ-θ+sinπ4θ-1的值.解法1:把cosθ-sinθ化成2cosθ+4π,由条件利用半角公式分别求出cosθ+4π和sinθ+4π的值.原式=cosθ-sinθ2sinθ+4π=2cosθ+4π2sinθ+4π=cosθ+4πsinθ+4π,由sin2θ=53,0<θ<4π,得cos2π+…  相似文献   

12.
参考公式:三角函数的积化和差公式sinαcosβ=12[sin(α+β)+sin(α-β)]cosαsinβ=12[sin(α+β)-sin(α-β)]cosαcosβ=12[cos(α+β)+cos(α-β)]sinαsinβ=-12[cos(α+β)-cos(α-β)]正棱台、圆台的侧面积公式S台侧=12(c′+c)l其中c′,c分别表示上、下底面周长,l表示斜高或母线长球体的表面积公式:S球=4πR2其中R表示球的半径一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)(理)设全集是实数集R,M={x|-2≤x≤2},N={x|x<1},则M∩N等于()A.{x|x<-2}B.{x|-2相似文献   

13.
一、考查平面向量的基本概念和运算律例1设a、b、c是任意的非零平面向量,且互不共线,给出下列四个命题:①(a·b)c-(c·a)b=0;②|a|-|b|<|a-b|;③(b·c)a-(c·a)b不与c垂直;④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中真命题有()A.①②B.②③C.③④D.②④解析①∵a、b、c互不共线,∴(a·b)c与(c·a)b分别与c、b共线,而c与b不共线,∴(a·b)c≠(c·a)b,故(a·b)c-(c·a)b=0不成立.②∵a、b、c互不共线,∴a、b、a-b可以构成三角形,∴|a|-|b|<|a-b|.③∵犤(b·c)a-(c·a)b犦·c=(b·c)a·c-(c·a)b·c=(b·c)(a·c)-(c·a)(b·c)=0,…  相似文献   

14.
文 [1]中给出如下问题 :设 sin4xa +cos4xb =1a+b,a>0 ,b>0 ,证明 :对任意正整数 n,都有 sin2 nan-1 +cos2 nxbn-1 =1(a+b) n-1 .文 [1]用了丢番图恒等式来证明 ,并认为若用三角式的恒等变形 ,则过程复杂 ,运算冗繁 .文 [2 ]通过构造椭圆及其切线来证明 .上述两种方法思维要求比较高 ,不易想到 .其实本题直接应用三角式的变形 ,简捷浅显 ,以下给出上述问题简证 .证明 由 sin4xa +cos4xb =1a+b,得 a+ba sin4x+a+bb cos4x=1,即 basin4x+abcos4x+sin4x+cos4x=1.又 sin4x +cos4x =(sin2 x +cos2 x ) 2 -2 sin2 xcos2 x=1- 2 sin2 xcos2 x,则 ba…  相似文献   

15.
大家知道,三角式asinx+bcosx=√a2+b2sin(x+ψ),其中tanψ=b/a,而|sin(x+ψ)|≤1,由此可知三角方程asinx+bcosx=c有解的充要条件是a2+b2≥c2,对于这个充要条件中等号何时成立,我们可做如下推导: ∵ a2+b2-c2=a2+b2-(asinx+bcosx)2=a2+b2-a2sin2x-2ab·sinxcosx-b2cos2x=a2(1-sin2x)-2absinxcosx+b2(1-cos2x)=b2sin2x-2absinxcosx+a2cos2x=(acosx-bsinx)2.∴当且仅当bsinx=acosx时a2+b2=c2成立.  相似文献   

16.
第1卷(选择题共50分)参考公式: 三角函数的积化和差公式sin a cos β=1/2[sin(a+β)+sin(a-β)] cos a sin β=1/2[sin(a+β)-sin(a-β)] cos a COS β=1/2[cos(a+β)+cos(a-β)]  相似文献   

17.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

18.
对于形如y=asinx+bcosx的三角式,可变形如下:y=asinx+bcosx=a2+b2(sinx·a22+cosx·b a2+b2).由于上式中的aa2+b2与ba2+b2的平方和为1,故可记aa2+b2=cosθ,ba2+b2=sinθ,则y=a2+b2(sinxcosθ+cosxsinθ)=a2+b2sin(x+θ).由此我们得到结论:asinx+bcosx=a2+b2sin(x+θ),()其中θ由aa2+b2=cosθ,ba2+b2=sinθ来确定.通常称式子()为辅助角公式.它可以将多个三角式的函数问题,最终化为y=Asin(ωx+φ)+k的形式.下面结合近年高考三角题,就辅助角公式的应用,举例分类简析.一、求周期例1(2006年上海卷选)求函数y=2cos(x+π4)cos(x-π4)+3sin2x的最小…  相似文献   

19.
第1卷(选择题共50分)参考公式: 三角函数的积化和差公式sin a COS β=1/2[sin(a+β)+sin(a-β)]cos a sinβ=1/2[sin(a+β)-sin(a-β)]cos a COS β=1/2[cos(a+β)+cos(a-β)]  相似文献   

20.
正确理解和运用平面向量的数量积有助 于利用向量这一强有力的数学利器。笔者以 下着重谈一谈学习平面向量的数量积时需要 注意的几个问题,提醒同学们在学习中加以 注意. 提示1.注意区别向量的数量积a·b与 实数乘法a·b 向量的数量积a·b与实数乘法a·b有 许多不同之处,而要正确区分它们,关键是以 公式a·b=|a|·|b|cosθ为依据…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号