首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A seven channel polystyrene (PS) microchip has been constructed using a micromilling machine and a high-temperature assembling. Protein A (PA) has been immobilized by a passive sorption on the microchannel walls. Two bioaffinity assays with human immunoglobulin G (hIgG) as a ligand have been carried out. (i) PA as the receptor and fluorescently labeled hIgG (FITC-hIgG) as the ligand, (ii) PA as the receptor with hIgG as the quantified ligand and fluorescently labeled goat anti-human IgG (FITC-gIgG) as the secondary ligand. One incubation step of the assays took only 5 min instead of hours typical for enzyme-linked immunosorbent assay applications. Calibration curves of the dependence of a fluorescence signal on the hIgG concentration in a sample have been obtained in one step due to a parallel arrangement of microchannels. A mathematical model of the PA-FITC-hIgG complex formation in the chip has been developed. The values of the kinetic constant of the PA-FITC-hIgG binding (kon=5.5 m3 mol−1 s−1) and the equilibrium dissociation constant of the formed complex (Kd≤3×10−6 mol m−3) have been obtained by fitting to experimental data. The proposed microchip enables fast evaluation of kinetic and equilibrium constants of ligand-receptor bioaffinity pairs and the ligand quantification. As the use of microfluidic chips for immunoassays is often limited by price, we used procedures and chemicals that allow for an inexpensive construction and operation of the microdevice, e.g., temperature assembling as a fabrication technique, detection via an ordinary digital camera, nonspecific polystyrene as a substrate, passive sorption of biomolecules as an immobilization technique, etc.  相似文献   

2.
The dielectrophoretic behavior of active, dead, and dormant Mycobacterium smegmatis bacterial cells was studied. It was found that the 72-h-old dormant cells had a much higher effective particle conductivity (812±10 μS cm−1), almost double that of active cells (560±20 μS cm−1), while that of dead (autoclaved) M. smegmatis cells was the highest (950±15 μS cm−1) overall. It was also found that at 80 kHz, 900 μS cm−1 dead cells were attracted at the edges of interdigitated castellated electrodes by positive dielectrophoresis, but dormant cells were not. Similarly, at 120 kHz, 2 μS cm−1 active cells were attracted and dormant cells were not. Using these findings a dielectrophoresis-based microfluidic separation system was developed in which dead and active cells were collected from a given cell suspension, while dormant cells were eluted.  相似文献   

3.
The estimation of electrolytes like sodium (Na+), potassium (K+) and chloride (Cl) using direct and indirect ion-selective electrodes (ISE) is a routine laboratory practice. Interferents like proteins, triglycerides, drugs etc. are known to affect the results. The present study was designed to look into the effect of increasing glucose concentrations on estimation of Na+, K+ and Cl by direct and indirect ISE. Pooled sera was mixed with glucose stock solution (20 g/dL) prepared in normal saline to obtain glucose concentrations ranging from ~100 to ~5000 mg/dL. Na+, K+ and Cl levels were estimated by direct and indirect ISE analyzers and results were statistically analysed using ANOVA and Pearson’s correlation. Similar experiment was also performed in 24 h urine sample from healthy subjects. Significant difference was observed between Na+ and Cl measurements by direct and indirect ISE, with indirect ISE values being consistently higher than direct ISE. Besides this, significant difference was observed amongst Na+ and Cl values from baseline values obtained by indirect ISE at glucose concentrations ≥2486 mg/dL. However, no such difference was observed with direct ISE. Na+ and Cl estimation by indirect ISE showed significant negative correlation with glucose concentration, more so, above ~2000 mg/dL. K+, however, showed no significant difference with varying glucose. Similar results were observed in 24 h urine samples with a significant difference observed amongst Na+ and Cl values at ≥2104 mg/dL glucose. Thus we conclude that high glucose concentrations interfere significantly in estimation of Na+ and Cl by indirect ISE in serum as well as urine.

Electronic supplementary material

The online version of this article (doi:10.1007/s12291-015-0522-0) contains supplementary material, which is available to authorized users.  相似文献   

4.

Introduction

The determination of lipid biomarkers by capillary sampling may be useful in the screening, diagnosis and/or personal management of hyperlipidemia and cardiovascular risk. It remains unclear whether the use of the Accutrend® Plus system is appropriate. This study aimed to assess its reproducibility, accuracy and concordance for blood lipid profiling in adults.

Materials and methods:

Fasting capillary total cholesterol (TC) and triglyceride (TG) concentration on Accutrend® Plus were compared with their venous analogues obtained by a laboratory reference method in sixty-one adults (27 men and 34 women, aged 33.0 years). Supplementary capillary sampling was performed at two consecutive days taking into account macro-nutrient intake.

Results:

The day-to-day reproducibility of the Accutrend® Plus system proved to be high for TC (ICC = 0.85, P < 0.001), but moderate for TG (ICC = 0.68, P < 0.001). Strong correlations (r ≥ 0.80, P < 0.001) with the reference method were found for TC and TG. Mean difference (limits of agreement) were: 0.26 mmol/L (−0.95, 1.47) for TC, and −0.16 mmol/L (−1.29, 0.98) for TG. The concordance for subject classification according to the National Cholesterol Education Program (NCEP) guidelines was significant (P < 0.001), with substantial agreement for TC (κw = 0.67), and moderate agreement for TG (κw = 0.50).

Conclusions:

Day-to-day reproducibility of the Accutrend® Plus device for TC and TG is not optimal and lacks accuracy when compared to the reference laboratory method. The concordance between both methods for classifying subjects according to the NCEP is inadequate. Accutrend® Plus device should not be interchangeably used as a substitution for the standard laboratory methods in the diagnosis of hyperlipidemia.  相似文献   

5.
This paper describes an integrated microfluidic chip that is capable of rapidly and quantitatively measuring the concentration of a bladder cancer biomarker, apolipoprotein A1, in urine samples. All of the microfluidic components, including the fluid transport system, the micro-valve, and the micro-mixer, were driven by negative pressure, which simplifies the use of the chip and facilitates commercialization. Magnetic beads were used as a solid support for the primary antibody, which captured apolipoprotein A1 in patients'' urine. Because of the three-dimensional structure of the magnetic beads, the concentration range of the target that could be detected was as high as 2000 ng ml−1. Because this concentration is 100 times higher than that quantifiable using a 96-well plate with the same enzyme-linked immunosorbent assay (ELISA) kit, the dilution of the patient''s urine can be avoided or greatly reduced. The limit of detection was determined to be approximately 10 ng ml−1, which is lower than the cutoff value for diagnosing bladder cancer (11.16 ng ml−1). When the values measured using the microfluidic chip were compared with those measured using conventional ELISA using a 96-well plate for five patients, the deviations were 0.9%, 6.8%, 9.4%, 1.8%, and 5.8%. The entire measurement time is 6-fold faster than that of conventional ELISA. This microfluidic device shows significant potential for point-of-care applications.  相似文献   

6.
An electrokinetic driven microfluidic lab-on-a-chip was developed for glucose quantification using double-enzyme assay. The enzymatic glucose assay involves the two-step oxidation of glucose, which was catalyzed by hexokinase and glucose-6-phosphate dehydrogenase, with the concomitant reduction of NADP+ to NADPH. A fluorescence microscopy setup was used to monitor the different processes (fluid flow and enzymatic reaction) in the microfluidic chip. A two-dimensional finite element model was applied to understand the different aspects of design and to improve the performance of the device without extensive prototyping. To our knowledge this is the first work to exploit numerical simulation for understanding a multisubstrate double-enzyme on-chip assay. The assay is very complex to implement in electrokinetically driven continuous system due to the involvement of many species, which has different transport velocity. With the help of numerical simulation, the design parameters, flow rate, enzyme concentration, and reactor length, were optimized. The results from the simulation were in close agreement with the experimental results. A linear relation exists for glucose concentrations from 0.01 to 0.10 g l−1. The reaction time and the amount of enzymes required were drastically reduced compared to off-chip microplate analysis.  相似文献   

7.

Introduction

The aim of the present study was to validate prothrombin time (PT) international normalized ratio (INR) results obtained using Steelex test reagents and a Steelex coagulometer (Steelex Scientific Instrument Company, Beijing, China), in comparison with use of a well-established standard test employing Pacific Hemostasis reagents (Fisher Diagnostics, Middletown, VA, USA) and Teco Coatron A4 coagulometer (Teco Medical Instruments GmbH, Neufahrn, Germany).

Materials and methods:

Between- and within-day coefficients of variation (CVs) of both assays were calculated using control samples provided by the test manufacturers. Samples from 90 subjects were collected and INR values were determined in a double-blind parallel manner employing both systems.

Results:

The within-day coefficients of variation (CVs) in INR estimates ranged from 2.6% (INR = 1.12) to 3.1% (INR = 2.51) for the Steelex system and from 2.1% (INR = 1.09) to 1.8% (INR = 2.8) for the Pacific test; the between-day values ran from 3.4% (INR = 1.16) to 7.9% (INR = 2.64) and from 3.3% (INR = 1.1) to 2.3% (INR = 2.7), respectively. Passing-Bablok fit of the of the Steelex and Pacific methods yielded the equation: Steelex INR = 0.85 (0.79–0.91) × Pacific INR + 0.12 (−0.02–0.21), whereas the CUSUM linearity P value was < 0.01. The mean bias as determined by the Bland-Altman test was −0.156 (−0.912–0.600).

Conclusion:

The results obtained using Steelex reagents and the M600H coagulometer are not equivalent to those obtained using Pacific Hemostasis reagents and a Teco Coatron A4 coagulometer, at least in the therapeutic range.  相似文献   

8.
A porous silicon (PSi) based microarray has been integrated with a microfluidic system, as a proof of concept device for the optical monitoring of selective label-free DNA-DNA interaction. A 4 × 4 square matrix of PSi one dimensional photonic crystals, each one of 200 μm diameter and spaced by 600 μm, has been sealed by a polydimethylsiloxane (PDMS) channels circuit. The PSi optical microarray elements have been functionalized by DNA single strands after sealing: the microfluidic circuit allows to reduce significantly the biologicals and chemicals consumption, and also the incubation time with respect to a not integrated device. Theoretical calculations, based on finite element method, taking into account molecular interactions, are in good agreement with the experimental results, and the developed numerical model can be used for device optimization. The functionalization process and the interaction between DNA probe and target has been monitored by spectroscopic reflectometry for each PSi element in the microchannels.  相似文献   

9.
This paper presents the design and analysis of a liquid refractive index sensor that utilizes a unique physical mechanism of resonant optical tunneling effect (ROTE). The sensor consists of two hemicylindrical prisms, two air gaps, and a microfluidic channel. All parts can be microfabricated using an optical resin NOA81. Theoretical study shows that this ROTE sensor has extremely sharp transmission peak and achieves a sensitivity of 760 nm∕refractive index unit (RIU) and a detectivity of 85 000 RIU−1. Although the sensitivity is smaller than that of a typical surface plasmon resonance (SPR) sensor (3200 nm∕RIU) and is comparable to a 95% reflectivity Fabry–Pérot (FP) etalon (440 nm∕RIU), the detectivity is 17 000 times larger than that of the SPR sensor and 85 times larger than that of the FP etalon. Such ROTE sensor could potentially achieve an ultrahigh sensitivity of 10−9 RIU, two orders higher than the best results of current methods.  相似文献   

10.
Shah D  Steffen M  Lilge L 《Biomicrofluidics》2012,6(1):14111-1411110
Chemical cytometry on a single cell level is of interest to various biological fields ranging from cancer to stem cell research. The impact chemical cytometry can exert in these fields depends on the dimensionality of the retrievable analytes content. To this point, the number of different analytes identifiable and additionally their subcellular localization is of interest. To address this, we present an electroporation based approach for selective lysis of only the plasma membrane, which permits analysis of the dissolved cytoplasm, while reducing contributions from the nucleus and membrane bound fractions of the cell analytes. The use of 100 μs long pulse and a well defined DC electric field gradient of ∼4.5 kV·cm−1 generated by 3D electrodes initiates release of a cytoplasm marker in ≪1 s, while retaining nuclear fluorescence markers.  相似文献   

11.
Wang ZK  Zheng HY 《Biomicrofluidics》2012,6(1):12820-1282012
The study investigates the use of CO2 laser to induce glass strip peeling off to form microchannels on soda lime gass substrate. The strip peeling exhibits a strong dependence on the energy deposition rate on the glass surface. In spite of the vast difference in the combination of laser power and scanning speed, when the ratio of the two makes the energy deposition rate in the range 3.0-6.0 J/(cm2 s), the temperature rising inside glass will be above the strain point and reach the softening region of the glass. As a result, glass strip peeling is able to occur and form microchannels with dimensions of 20-40 μm in depth and 200-280 μm in width on the glass surface. Beyond this range, higher energy depsotion rate would lead to surface melting associated with solidification cracks and lower energy deposition rate causes the generation of fragment cracks.  相似文献   

12.
We have studied the contraction and extension of Vorticella convallaria and its mechanical properties with a microfluidic loading system. Cells of V. convallaria were injected to a microfluidic channel (500 μm in width and 100 μm in height) and loaded by flow up to ∼350 mm s−1. The flow produced a drag force on the order of nanonewton on a typical vorticellid cell body. We gradually increased the loading force on the same V. convallaria specimen and examined its mechanical property and stalk motion of V. convallaria. With greater drag forces, the contraction distance linearly decreased; the contracted length was close to around 90% of the stretched length. We estimated the drag force on Vorticella in the channel by calculating the force on a sphere in a linear shear flow.  相似文献   

13.
Matrix metalloproteinase [MMP]-2 and tissue inhibitor of metalloproteinase [TIMP]-2 are emerging as pivotal players in inflammation and carcinogenesis. The present study aimed to evaluate the role of MMP-2 (−735C > T) [rs 2285053] and TIMP-2 (−418G > C) [rs 8179090] gene polymorphisms in cervical cancer susceptibility in Indian women. We recruited 200 cervical cancer patients from North India and 200 unrelated, age-matched, cancer-free healthy female controls of similar ethnicity. Genomic DNA extraction from peripheral blood samples, collected from the study subjects, was carried out using salting-out method. MMP-2 and TIMP-2 genotyping was performed using polymerase chain reaction-based restriction fragment length polymorphism. Our findings demonstrated no significant association between MMP-2 (−735C > T) and TIMP-2 (−418G > C) gene polymorphisms and the risk of developing cervical cancer in the study population. Further stratified analysis using a case-only study approach revealed that there was no effect of MMP-2/TIMP-2 polymorphisms on early and advanced stages of cervical cancer. Further MMP-2 and TIMP-2 polymorphisms did not modulate the risk in cervical cancer patients who smoked tobacco/cigarettes. Overall, the present study demonstrated a lack of association between MMP-2 and TIMP-2 gene polymorphisms and cervical cancer susceptibility in women of Northern India.  相似文献   

14.
This paper studies the Rayleigh-Plateau instability for co-flowing immiscible aqueous polymer solutions in a microfluidic channel. Careful vibration-free experiments with controlled actuation of the flow allowed direct measurement of the growth rate of this instability. Experiments for the well-known aqueous two phase system (ATPS, or aqueous biphasic systems) of dextran and polyethylene glycol solutions exhibited a growth rate of 1 s−1, which was more than an order of magnitude slower than an analogous experiment with two immiscible Newtonian fluids with viscosities and interfacial tension that closely matched the ATPS experiment. Viscoelastic effects and adhesion to the walls were ruled out as explanations for the observed behavior. The results are remarkable because all current theory suggests that such dilute polymer solutions should break up faster, not slower, than the analogous Newtonian case. Microfluidic uses of aqueous two phase systems include separation of labile biomolecules but have hitherto be limited because of the difficulty in making droplets. The results of this work teach how to design devices for biological microfluidic ATPS platforms.  相似文献   

15.

Introduction

The study of cardiac response to strenuous and continuous exercise is crucial to understanding the physiology of endurance. N-terminal proB-type natriuretic peptide (NT-proBNP) is a potential marker for monitoring myocardial wall stress, and troponins (TnT and TnI) are widely used in the diagnosis of cardiac ischemia and infarction. Strenuous exercise may generate transitory ischemia, myocardial stress, and diastolic left ventricular dysfunction, inducing the increased production of both these biomarkers. We measured changes in NT-proBNP and TnT in elite cyclists during a 3-week stage race, a model of strenuous exercise.

Materials and methods:

The study population was 9 professional cyclists participating in the 2011 Giro d’Italia. Pre-analytical and analytical phases scrupulously followed official recommendations. Anthropometric data, net energy expenditure and cardiac indexes (rate, diastolic and systolic blood pressure) were recorded. Blood samples were drawn pre-race (day −1) and at days 12 and 22; NT-proBNP and highly sensitive-troponin (Hs-TnT) concentrations were assayed and corrected for plasma volume changes.

Results:

Body-mass index decreased and energy expenditure increased by 52% during the race. NT-proBNP concentrations increased [day −1: 23.52 ng/L (9.67–34.33); day 12: 63.46 ng/L (22.15–93.31); P = 0.039; day 22: 89.26 ng/L (34.66–129.78) vs. day −1; P < 0.001] and correlated with heart rate (r = −0.51; P = 0.006), systolic pressure (r = 0.39; P = 0.046) and energy expenditure (r = 0.70; P < 0.001). TnT concentrations did not vary, but a widened TnT amplitude distribution was observed.

Conclusions:

Increases in NT-proBNP correlated with higher energy expenditure over a 3-week cycling stage race, possibly indicating myocardial stress.  相似文献   

16.
Microfluidic diagnostic devices often require handling particles or cells with different sizes. In this investigation, a tunable hydrophoretic device was developed which consists of a polydimethylsiloxane (PDMS) slab with hydrophoretic channel, a PDMS diaphragm with pressure channel, and a glass slide. The height of the hydrophoretic channel can be tuned simply and reliably by deforming the elastomeric diaphragm with pressure applied on the pressure channel. This operation allows the device to have a large operating range where different particles and complex biological samples can be processed. The focusing performance of this device was tested using blood cells that varied in shape and size. The hydrophoretic channel had a large cross section which enabled a throughput capability for cell focusing of ∼15 000 cells s−1, which was more than the conventional hydrophoretic focusing and dielectrophoresis (DEP)-active hydrophoretic methods. This tunable hydrophoretic focuser can potentially be integrated into advanced lab-on-a-chip bioanalysis devices.  相似文献   

17.
For the first time, we report on the preliminary evaluation of gold coated optical fibers (GCOFs) as three-dimensional (3D) electrodes for a membraneless glucose/O2 enzymatic biofuel cell. Two off-the-shelf 125 μm diameter GCOFs were integrated into a 3D microfluidic chip fabricated via rapid prototyping. Using soluble enzymes and a 10 mM glucose solution flowing at an average velocity of 16 mm s−1 along 3 mm long GCOFs, the maximum power density reached 30.0 ± 0.1 μW cm−2 at a current density of 160.6 ± 0.3 μA cm−2. Bundles composed of multiple GCOFs could further enhance these first results while serving as substrates for enzyme immobilization.  相似文献   

18.
The goal of this work is to determine the role of the autoimmune cells in multiple sclerosis (MS) induction and the immunomodulatory mechanism of therapy with tyrosine kinase inhibitors (TKIs) in MS attenuation. Samples (5 × 105 cells per well) of C6 and primary rat astrocytes were stimulated with 10 ng/mL of platelet-derived growth factor (PDGFbb) as a positive control forming a mouse model of MS. PDGFbb was added to the astrocytes in the absence or presence of 0.1 and 1 μM of imatinib. Proliferation of C6 and primary rat astrocytes samples were assessed for samples staging by the addition of 1 μCi of 3H-thymidine per well. Samples of RAW 264.7 cells were stimulated for 48 h with 10 ng/mL of PDGFbb in the absence or presence of 0.1 and 1 μM of sorafenib. Tumour necrotic factor (TNF) levels in culture supernatants from RAW 264.7 cells were measured by ELISA. The histologic grade (HG) and the level of TNF of the mouse model of MS was 1/5 and 5 times respectively of those in the control one to clarify that MS induction is due to a major decrease in HG inversely proportional to the accompanied increase in TNF level perpetuating local inflammation and demyelination in MS lesion. The addition of 0.1 and 1 μM doses of imatinib increased HG of the mouse model of MS by 6 and 11 times respectively while 0.1 and 1 μM doses of sorafenib decreased TNF level to be 1/2 and 1/5 of that in the mouse model of MS respectively restoring normal rate of TNF level of normal lesion to show that HGand TNF level would be strongly inversely correlated (r = −0.99) in attenuating MS effectively by TKIs therapy but not in an inverse proportion as in MS induction.  相似文献   

19.
In microcirculation, red blood cells (RBCs) flowing through bifurcations may deform considerably due to combination of different phenomena that happen at the micro-scale level, such as: attraction effect, high shear, and extensional stress, all of which may influence the rheological properties and flow behavior of blood. Thus, it is important to investigate in detail the behavior of blood flow occurring at both bifurcations and confluences. In the present paper, by using a micro-PTV system, we investigated the variations of velocity profiles of two working fluids flowing through diverging and converging bifurcations, human red blood cells suspended in dextran 40 with about 14% of hematocrit level (14 Hct) and pure water seeded with fluorescent trace particles. All the measurements were performed in the center plane of rectangular microchannels using a constant flow rate of about 3.0 × 10−12 m3/s. Moreover, the experimental data was compared with numerical results obtained for Newtonian incompressible fluid. The behavior of RBCs was asymmetric at the divergent and convergent side of the geometry, whereas the velocities of tracer particles suspended in pure water were symmetric and well described by numerical simulation. The formation of a red cell-depleted zone immediately downstream of the apex of the converging bifurcation was observed and its effect on velocity profiles of RBCs flow has been investigated. Conversely, a cell-depleted region was not formed around the apex of the diverging bifurcation and as a result the adhesion of RBCs to the wall surface was enhanced in this region.  相似文献   

20.
A droplet-based micro-total-analysis system involving biosensor performance enhancement by integrated surface-acoustic-wave (SAW) microstreaming is shown. The bioreactor consists of an encapsulated droplet with a biosensor on its periphery, with in situ streaming induced by SAW. This paper highlights the characterization by particle image tracking of the speed distribution inside the droplet. The analyte-biosensor interaction is then evaluated by finite element simulation with different streaming conditions. Calculation of the biosensing enhancement shows an optimum in the biosensor response. These results confirm that the evaluation of the Damköhler and Peclet numbers is of primary importance when designing biosensors enhanced by streaming.It has been pointed out that biosensing performances can be limited by the diffusion of the analytes near the sensing surface.1 In the case of low Peclet number hydrodynamic flows, typical of microfluidic systems, molecule displacements are mainly governed by diffusive effects that affect time scales and sensitivity. To overcome this problem, the enhancement of biosensor performance by electrothermal stirring within microchannels was first reported by Meinhart et al.2 Other authors3, 4 numerically studied the analyte transport as a function of the position of a nanowire-based sensor inside a microchannel, stressing on the fact that the challenge for nanobiosensors is not the sensor itself but the fluidic system that delivers the sample. Addressing this problem, Squires et al.5 developed a simple model applicable to biosensors embedded in microchannels. However, the presented model is limited to the case of a steady flow. The use of surface-acoustic waves (SAWs) for stirring in biomicrofluidic and chemical systems is becoming a popular investigation field,6, 7, 8, 9 especially to overcome problems linked to steady flows by enhancing the liquid∕surface interaction.1, 10, 11 The main challenges that need to be addressed when using SAW-induced stirring are the complexity of the flow and its poor reproducibility. However, some technical solutions were proposed to yield a simplified microstreaming. Yeo et al. presented a centrifugation system based on SAW that produces the rotation of the liquid in a droplet in a reproducible way by playing on the configuration of the transducers and reflectors,12 and presented a comprehensive experimental study of the three-dimensional (3D) flow that causes particle concentration in SAW-stirred droplets,13 revealing the presence of an azimuthal secondary flow in addition to the main vortexlike circular flow present in acoustically stirred droplets. The efficiency of SAW stirring in microdroplets to favorably cope with mass transport issues was finally shown by Galopin et al.,14 but the effect of the stirring on the analyte∕biosensor interaction was not studied. It is expected to overcome mass transport limitations by bringing fresh analytes from the bulk solution to the sensing surface.The studied system, described in Fig. Fig.1,1, consists of a microliter droplet microchamber squeezed between a hydrophobic piezoelectric substrate and a hydrophobic glass cover. Rayleigh SAWs are generated using interdigitated transducers (interdigital spacing of 50 μm) laid on an X-cut LiNbO3 substrate.1, 15, 16 The hydrophobicity of the substrate and the cover are obtained by grafting octadecyltrichlorosilane (OTS) self-assembled monolayers (contact angle of 108° and hysteresis of 9°). To do so, the surface is first hydroxylized using oxygen plasma (150 W, 100 mT, and 30 sccm3 O2) during 1 min and then immersed for 3 h into a 1 mM OTS solution with n-hexane as a solvent.Open in a separate windowFigure 1(a) General view of the considered system. (b) Mean value of the measured speeds within the droplet as a function of the inlet power before amplification.When Rayleigh waves are radiated toward one-half of the microchamber, a vortex is created in the liquid around an axis orthogonal to the substrate due to the momentum transfer between the solid and the liquid. This wave is generated under the Rayleigh angle into the liquid.Speed cartographies of the flow induced in the droplet are realized using the particle image tracking technique for different SAW generation powers. To do so, instantaneous images of the flow are taken with a high-speed video camera at 200 frames∕s and an aperture time of 500 μs on a 0.25 μl droplet containing 1 μm diameter fluorescent particles. Figure Figure11 shows the mean speed measured in the droplet as a function of the inlet power. The great dependence of the induced mean speed with the SAW power enables a large range of flow speeds in the stirred droplet. Moreover, the flow was visualized with a low depth of field objective. It was found to be circular and two dimensional (2D) in a large thickness range of the droplet.The binding of analytes to immobilized ligands on a biosensor is a two step process, including the mass transport of the analyte to the surface, followed by a complexation step,AbulkkmAsurface+Bka,kdAB(1)with km as the constant rate for mass transport from and to the sensor, and ka and kd as the constant rates of association and dissociation of the complex.At the biosensor surface, the reaction kinetics consumes analytes but their transport is limited by diffusive effects. In this case, the Damköhler number brings valuable information by comparing these two effects. Calling the characteristic time of reaction and diffusion, respectively, τC and τM, the mixing time in diffusion regime can be approximated by τMh2D with D as the diffusion coefficient and h a characteristic length of the microchannel. Calling RT the ligand concentration on the surface in mole∕m2, the Damköhler number (Da) can be written asDa=τMτC=kaRThD.(2)Depending on the type of reaction, the calculation of Da helps determine if a specific biointeraction will benefit from a mass SAW-based microstreaming. If the Damköhler number is low, the reaction is slow compared to mass transport and the reaction will not significantly benefit from microstirring. For example, the hybridization of 19 base single stranded DNA in a microfluidic system with a characteristic length of 500 μm is characterized by a Damköhler number of 0.07 and is therefore not significantly influenced by mass transport. On the contrary, the binding of biotin to immobilized streptavidin is characterized by a Da number of approximately 104. In this case, the stirring solution will significantly improve the reaction rate.COMSOL numerical simulations were carried out to study the efficiency of the SAW stirring in the case of a droplet-based microbioreactor with a diameter of 1 mm. Assuming a 2D flow, the simulated model takes into account the convective and diffusive effects in the analyte-carrying fluid and the binding kinetics on the biosensor surface. This approach was thoroughly developed by Meinhart et al.2On the biosensor surface, the following equations are solved:Bt=kacs(RTB)kdB,(3)Bt=D|cy|y=0(4)with c as the local concentration of analytes in the droplet and B as the surface concentration of bound analytes on the biosensor surface. Simulation results show that a depleted zone is formed near the biosensor in the case of an interaction without stirring. This zone is characterized by a low concentration of analytes and results from the trapping of analytes on the biosensor surface, thus creating a concentration gradient on the vicinity of the biosensor. When stirring is applied, the geometry of the depleted zone is modified, as it is pushed in the direction of the flow. The geometry of the depleted zone then depends on many parameters, among which the diffusion coefficient D, the speed distribution of the flow (not only near the biosensor but also in the whole microfluidic system), and the reaction kinetics on the biosensor. In our case, which is assimilated to a simple circular flow, the depleted zone reaches a permanent state consisting of an analyte-poor layer situated in the exterior perimeter of the stirred droplet. The diffusion of analytes is then limited again by diffusion from the inner part of the droplet toward its exterior perimeter (see Fig. Fig.22).Open in a separate windowFigure 2(a) Mean concentration of bound analytes vs time for different mean flow speeds. (b) The obtained concentration profiles with and without circular stirring, t=10 000 s.The initial analyte and receptor concentrations are, respectively, 0.1 nM in the solution and 3.3×10−3 nM m on the biosensor surface, the diffusion coefficient is D=10−11 m2 s−1, and the reaction constants are ka=106 M−1 s−1 and kd=10−3 s−1. Simulations show that the mean concentration of bound analytes highly increases with the flow speed, improving the efficiency of the biosensing device. To evaluate the benefits of in situ microstreaming with SAW, the same simulations were conducted for Da numbers ranging from 104 to 108 M−1∕s, by ranging the diffusion coefficient from 4×10−12 to 4×10−9 m2∕s, and the association coefficient ka from 104 to 108 M−1∕s. The enhancement factor of analyte capture, defined as the ratio of the binding rate with streaming B and the binding rate without streaming B0, is plotted in Fig. Fig.33 for different values of Da. Calculations are done in the case of a mean flow speed of 0.5 mm∕s.Open in a separate windowFigure 3(a) Enhancement factor (defined as the ratio between binding rate with streaming B and binding rate without streaming B0) for different Damkhöler numbers and (b) normalized enhancement factor for different Peclet numbers.One can notice the saturation of the enhancement factor curve for large value of Da to the value of 3.5 for high Da. This can be explained by the fact that for large kaDa ratios, the analytes, which normally require penetration in the depleted zone by diffusion, do not have time to interact with the biosensor when they pass in the vicinity of its surface. The efficiency of the streaming is then reduced for large values of Da. In the case of our specific flow configuration, the enhancement factor reaches 3.2 for the interaction of streptavidin on immobilized biotin (Da=103).The reported simulation results can be compared to an experimental value obtained using the droplet-based surface plasmon resonance sensor streamed in situ using SAW reported by Yeo et al.12 By monitoring the streptavidin∕biotin binding interaction on an activated gold slide, they showed that SAW stirring brings an improvement factor of more than 2. This difference can be accounted to the high complexity of the induced 3D flow, which was modeled in a simple manner in our calculations.Other factors must be taken into account when optimizing the improvement factor, such as the flow velocity and the characteristic length of the mixing. To do so, the Peclet number allows the comparison of the convective and diffusive effects.17 For δC a typical variation in concentration on the distance h, the Peclet number is given byPe=UhD.(5)A significantly high Peclet number causes a decrease in biosensing efficiency as the analytes do not have enough time to interact with the biosensing surface by diffusion through the analyte-poor layer. On the contrary, the case of a low Peclet number corresponds to the diffusion-limited problem. Therefore, for each Damköhler number, there is a Peclet number optimizing this factor. To illustrate this fact, Fig. Fig.3b3b shows the calculation of the enhancement factor as a function of the Peclet number for a given Da.In this paper, we showed that surface loading of typical analytes on a droplet-based biosensor can be highly increased by SAW microstirring. The system permits the enhancement of the biosensing performances by the continuous renewal of the analyte-carrying fluid near the sensing surface. Thanks to mean flow speeds measured up to 1800 μm∕s, the SAW microstreaming can be beneficial to the biosensing of a large range of analyte∕ligand interactions. In addition to the biosensing performance improvement, such a method can be easily integrated in micro-micro-total-analysis systems, which makes it a convenient tool for liquid handling in future biochips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号