首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier–Stokes and continuity equations using the arbitrary Lagrangian–Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle’s initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then decelerated in the diverging region, with the maximum translational velocity at the throat. For particles with diameters close to the width of the channel throat, the usual acceleration process is divided into three stages: Acceleration, deceleration, and reacceleration instead of a monotonic acceleration. Moreover, the maximum translational velocity occurs at the end of the first acceleration stage rather than at the throat. Along the centerline of the microchannel, particles do not rotate, and the closer a particle is located near the channel wall, the higher is its rotational velocity. Analysis of the transport of two particles demonstrates the feasibility of using a converging-diverging microchannel for passive (biological and synthetic) particle separation and ordering.  相似文献   

2.
The conventional microfluidic H filter is modified with multi-insulating blocks to achieve a flow-through manipulation and separation of microparticles. The device transports particles by exploiting electro-osmosis and electrophoresis, and manipulates particles by utilizing dielectrophoresis (DEP). Polydimethylsiloxane (PDMS) blocks fabricated in the main channel of the PDMS H filter induce a nonuniform electric field, which exerts a negative DEP force on the particles. The use of multi-insulating blocks not only enhances the DEP force generated, but it also increases the controllability of the motion of the particles, facilitating their manipulation and separation. Experiments were conducted to demonstrate the controlled flow direction of particles by adjusting the applied voltages and the separation of particles by size under two different input conditions, namely (i) a dc electric field mode and (ii) a combined ac and dc field mode. Numerical simulations elucidate the electrokinetic and hydrodynamic forces acting on a particle, with theoretically predicted particle trajectories in good agreement with those observed experimentally. In addition, the flow field was obtained experimentally with fluorescent tracer particles using the microparticle image velocimetry (μ-PIV) technique.  相似文献   

3.
This paper presents a field-flow method for separating particle populations in a dielectrophoretic (DEP) chip with asymmetric electrodes under continuous flow. The structure of the DEP device (with one thick electrode that defines the walls of the microfluidic channel and one thin electrode), as well as the fabrication and characterization of the device, was previously described. A characteristic of this structure is that it generates an increased gradient of electric field in the vertical plane that can levitate the particles experiencing negative DEP. The separation method consists of trapping one population to the bottom of the microfluidic channel using positive DEP, while the other population that exhibits negative DEP is levitated and flowed out. Viable and nonviable yeast cells were used for testing of the separation method.  相似文献   

4.
Focusing suspended particles in a fluid into a single file is often necessary prior to continuous-flow detection, analysis, and separation. Electrokinetic particle focusing has been demonstrated in constricted microchannels by the use of the constriction-induced dielectrophoresis. However, previous studies on this subject have been limited to Newtonian fluids only. We report in this paper an experimental investigation of the viscoelastic effects on electrokinetic particle focusing in non-Newtonian polyethylene oxide solutions through a constricted microchannel. The width of the focused particle stream is found NOT to decrease with the increase in DC electric field, which is different from that in Newtonian fluids. Moreover, particle aggregations are observed at relatively high electric fields to first form inside the constriction. They can then either move forward and exit the constriction in an explosive mode or roll back to the constriction entrance for further accumulations. These unexpected phenomena are distinct from the findings in our earlier paper [Lu et al., Biomicrofluidics 8, 021802 (2014)], where particles are observed to oscillate inside the constriction and not to pass through until a chain of sufficient length is formed. They are speculated to be a consequence of the fluid viscoelasticity effects.  相似文献   

5.
In this paper, thermal mixing characteristics of two miscible fluids in a T-shaped microchannel are investigated theoretically, experimentally, and numerically. Thermal mixing processes in a T-shaped microchannel are divided into two zones, consisting of a T-junction and a mixing channel. An analytical two-dimensional model was first built to describe the heat transfer processes in the mixing channel. In the experiments, de-ionized water was employed as the working fluid. Laser induced fluorescence method was used to measure the fluid temperature field in the microchannel. Different combinations of flow rate ratios were studied to investigate the thermal mixing characteristics in the microchannel. At the T-junction, thermal diffusion is found to be dominant in this area due to the striation in the temperature contours. In the mixing channel, heat transfer processes are found to be controlled by thermal diffusion and convection. Measured temperature profiles at the T-junction and mixing channel are compared with analytical model and numerical simulation, respectively.  相似文献   

6.
Focusing cells into a single stream is usually a necessary step prior to counting and separating them in microfluidic devices such as flow cytometers and cell sorters. This work presents a sheathless electrokinetic focusing of yeast cells in a planar serpentine microchannel using dc-biased ac electric fields. The concurrent pumping and focusing of yeast cells arise from the dc electrokinetic transport and the turn-induced ac∕dc dielectrophoretic motion, respectively. The effects of electric field (including ac to dc field ratio and ac field frequency) and concentration (including buffer concentration and cell concentration) on the cell focusing performance were studied experimentally and numerically. A continuous electrokinetic filtration of E. coli cells from yeast cells was also demonstrated via their differential electrokinetic focusing in a serpentine microchannel.  相似文献   

7.
Particle separation is important to many chemical and biomedical applications. Magnetic field-induced particle separation is simple, cheap, and free of fluid heating issues that accompany electric, acoustic, and optical methods. We develop herein a novel microfluidic approach to continuous sheath-free magnetic separation of particles. This approach exploits the negative or positive magnetophoretic deflection to focus and separate particles in the two branches of a U-shaped microchannel, respectively. It is applicable to both magnetic and diamagnetic particle separations, and is demonstrated through the sorting of 5 μm and 15 μm polystyrene particles suspended in a dilute ferrofluid.  相似文献   

8.
We propose an alternate fabrication technique of microchannel resonators based on an assembly method of three separate parts to form a microchannel resonator on a chip. The capability of the assembled microchannel resonator to detect mass is confirmed by injecting two liquids with different densities. The experimental and theoretical values of the resonator frequency shift are in agreement with each other, which confirms the consistency of the device. The noise level of the device is estimated from the Allan variance plot, so the minimum detectable mass of 230 fg after 16 s of operation is expected. By considering the time of the practical application of 1 ms, it is found that a detectable mass of around 8.51 pg is estimated, which is applicable for detecting flowing microparticles. The sub-pico to a few picogram levels of detection will be applicable for the mass analysis of flowing microparticles such as single cells and will be greatly beneficial for many fields such as chemistry, medicine, biology, and single-cell analysis.  相似文献   

9.
An analysis has been made of the dielectrophoretic (DEP) forces acting on a spheroidal particle in a traveling alternating electric field. The traveling field can be generated by application of alternating current signals to an octapair electrode array arranged in phase quadrature sequence. The frequency dependent force can be resolved into two orthogonal forces that are determined by the real and the imaginary parts of the Clausius–Mossotti factor. The former is determined by the gradient in the electric field and directs the particle either toward or away from the tip of the electrodes in the electrode array. The force determined by the imaginary component is in a direction along the track of the octapair interdigitated electrode array. The DEP forces are related to the dielectric properties of the particle. Experiments were conducted to determine the DEP forces in such an electrode arrangement using yeast cells (Saccharomyces cervisiate TISTR 5088) with media of various conductivities. Experimental data are presented for both viable and nonviable cells. The dielectric properties so obtained were similar to those previously reported in literature using other DEP techniques.  相似文献   

10.
Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.  相似文献   

11.
Electric field-driven separation and purification techniques, such as isoelectric focusing (IEF) and isotachophoresis, generate heat in the system that can affect the performance of the separation process. In this study, a new mathematical model is presented for IEF that considers the temperature rise due to Joule heating. We used the model to study focusing phenomena and separation performance in a microchannel. A finite volume-based numerical technique is developed to study temperature-dependent IEF. Numerical simulation for narrow range IEF (6 < pH < 10) is performed in a straight microchannel for 100 ampholytes and two model proteins: staphylococcal nuclease and pancreatic ribonuclease. Separation results of the two proteins are obtained with and without considering the temperature rise due to Joule heating in the system for a nominal electric field of 100 V/cm. For the no Joule heating case, constant properties are used, while for the Joule heating case, temperature-dependent titration curves and thermo-physical properties are used. Our numerical results show that the temperature change due to Joule heating has a significant impact on the final focusing points of proteins, which can lower the separation performance considerably. In the absence of advection and any active cooling mechanism, the temperature increase is the highest at the mid-section of a microchannel. We also found that the maximum temperature in the system is a strong function of the ΔpK? value of the carrier ampholytes. Simulation results are also obtained for different values of applied electric fields in order to find the optimum working range considering the simulation time and buffer temperature. Moreover, the model is extended to study IEF in a straight microchip where pH is formed by supplying H+ and OH, and the thermal analysis shows that the heat generation is negligible in ion supplied IEF.  相似文献   

12.
Wang F  Li Y  Chen L  Chen D  Wu X  Wang H 《Biomicrofluidics》2012,6(1):14120-1412012
Hyperthermia can be used as an adjunctive method of chemotherapy, radiotherapy, and gene therapy to improve cancer treatment. In this study, we investigate the hyperthermic cell death of cervix cancer CaSki cells in a microchannel integrated with a directional heating scheme. Heat was applied from the inner end to the outer end of the channel and a temperature distribution from 60 °C to 30 °C was established. A three dimensional (3D) numerical model was conducted for the heat transfer simulation, based on which a simple fitting method was proposed to easily estimate the temperature distribution along the channel. Cell death along the channel was mapped 22 h after the heating treatment by dual fluorescent labeling and phase-contrast microscopy imaging. Upstream, where the temperature is higher than 42 °C, we observe necrotic death, late-stage and early stage apoptotic death in sequence along the channel. Downstream and in the middle of the channel, where the temperature is lower than 42 °C, significant cell detachment was noted. Vigorous detachment was observed even in the non-hyperthermic zone (temperature lower than 37 °C), which we believe is due to the direct effect of the hyperthermic zones (higher than 37 °C). The present work not only gives a vivid map of cell responses under a temperature gradient, but also reveals the potential interactions of the heated tumor cells and non-heated tumor cells, which are seldom investigated in conventional petri-dish experiments.  相似文献   

13.
In microcirculation, red blood cells (RBCs) flowing through bifurcations may deform considerably due to combination of different phenomena that happen at the micro-scale level, such as: attraction effect, high shear, and extensional stress, all of which may influence the rheological properties and flow behavior of blood. Thus, it is important to investigate in detail the behavior of blood flow occurring at both bifurcations and confluences. In the present paper, by using a micro-PTV system, we investigated the variations of velocity profiles of two working fluids flowing through diverging and converging bifurcations, human red blood cells suspended in dextran 40 with about 14% of hematocrit level (14 Hct) and pure water seeded with fluorescent trace particles. All the measurements were performed in the center plane of rectangular microchannels using a constant flow rate of about 3.0 × 10−12 m3/s. Moreover, the experimental data was compared with numerical results obtained for Newtonian incompressible fluid. The behavior of RBCs was asymmetric at the divergent and convergent side of the geometry, whereas the velocities of tracer particles suspended in pure water were symmetric and well described by numerical simulation. The formation of a red cell-depleted zone immediately downstream of the apex of the converging bifurcation was observed and its effect on velocity profiles of RBCs flow has been investigated. Conversely, a cell-depleted region was not formed around the apex of the diverging bifurcation and as a result the adhesion of RBCs to the wall surface was enhanced in this region.  相似文献   

14.
休闲:一个新的社会文化现象   总被引:5,自引:0,他引:5  
今年6月由中国软科学研究会、中国艺术研究院休闲文化研究中心、山西大学科技哲学中心、《自然辩证法研究》编辑部在北京联合主办了一次“2004—中国:休闲与社会进步学术研讨会”。来自全国各地的学者代表80余人参加了会议。  相似文献   

15.
Micro-orifice based cell fusion assures high-yield fusion without compromising the cell viability. This paper examines feasibility of a dielectrophoresis (DEP) assisted cell trapping method for parallel fusion with a micro-orifice array. The goal is to create viable fusants for studying postfusion cell behavior. We fabricated a microfluidic chip that contained a chamber and partition. The partition divided the chamber into two compartments and it had a number of embedded micro-orifices. The voltage applied to the electrodes located at each compartment generated an electric field distribution concentrating in micro-orifices. Cells introduced into each compartment moved toward the micro-orifice array by manipulation of hydrostatic pressure. DEP assisted trapping was used to keep the cells in micro-orifice and to establish cell to cell contact through orifice. By applying a pulse, cell fusion was initiated to form a neck between cells. The neck passing through the orifice resulted in immobilization of the fused cell pair at micro-orifice. After washing away the unfused cells, the chip was loaded to a microscope with stage top incubator for time lapse imaging of the selected fusants. The viable fusants were successfully generated by fusion of mouse fibroblast cells (L929). Time lapse observation of the fusants showed that fused cell pairs escaping from micro-orifice became one tetraploid cell. The generated tetraploid cells divided into three daughter cells. The fusants generated with a smaller micro-orifice (diameter∼2 μm) were kept immobilized at micro-orifice until cell division phase. After observation of two synchronized cell divisions, the fusant divided into four daughter cells. We conclude that the presented method of cell pairing and fusion is suitable for high-yield generation of viable fusants and furthermore, subsequent study of postfusion phenomena.  相似文献   

16.
Electrophoresis plays an important role in many applications, which, however, has so far been extensively studied in Newtonian fluids only. This work presents the first experimental investigation of particle electrophoresis in viscoelastic polyethylene oxide (PEO) solutions through a microchannel constriction under pure DC electric fields. An oscillatory particle motion is observed in the constriction region, which is distinctly different from the particle behavior in a polymer-free Newtonian fluid. This stream-wise particle oscillation continues until a sufficient number of particles form a chain to pass through the constriction completely. It is speculated that such an unexpected particle oscillating phenomenon is a consequence of the competition between electrokinetic force and viscoelastic force induced in the constriction. The electric field magnitude, particle size, and PEO concentration are all found to positively affect this viscoelasticity-related particle oscillation due to their respective influences on the two forces.  相似文献   

17.
18.
A new microchannel with a series of symmetric sharp corner structures is reported for passive size-dependent particle separation. Micro particles of different sizes can be completely separated based on the combination of the inertial lift force and the centrifugal force induced by the sharp corner structures in the microchannel. At appropriate flow rate and Reynolds number, the centrifugal force effect on large particles, induced by the sharp corner structures, is stronger than that on small particles; hence after passing a series of symmetric sharp corner structures, large particles are focused to the center of the microchannel, while small particles are focused at two particle streams near the two side walls of the microchannel. Particles of different sizes can then be completely separated. Particle separation with this device was demonstrated using 7.32 μm and 15.5 μm micro particles. Experiments show that in comparison with the prior multi-orifice flow fractionation microchannel and multistage-multiorifice flow fractionation microchannel, this device can completely separate two-size particles with narrower particle stream band and larger separation distance between particle streams. In addition, it requires no sheath flow and complex multi-stage separation structures, avoiding the dilution of analyte sample and complex operations. The device has potentials to be used for continuous, complete particle separation in a variety of lab-on-a-chip and biomedical applications.  相似文献   

19.
Rapid prototyping of polydimethylsiloxane (PDMS) is often used to build microfluidic devices. However, the inherent hydrophobic nature of the material limits the use of PDMS in many applications. While different methods have been developed to transform the hydrophobic PDMS surface to a hydrophilic surface, the actual implementation proved to be time consuming due to differences in equipment and the need for characterization. This paper reports a simple and easy protocol combining a second extended oxygen plasma treatments and proper storage to produce usable hydrophilic PDMS devices. The results show that at a plasma power of 70 W, an extended treatment of over 5 min would allow the PDMS surface to remain hydrophilic for more than 6 h. Storing the treated PDMS devices in de-ionized water would allow them to maintain their hydrophilicity for weeks. Atomic force microscopy analysis shows that a longer oxygen plasma time produces a smoother surface.  相似文献   

20.
The internalization of apoptotic cells by non-phagocytic cells has been observed in different tissues and could be an important mechanism for the elimination of dying cells. Here, we describe a probable event of phagocytosis of apoptotic cells mediated by urothelial cells in urinary sediment. A 90-years-old male patient was admitted unconscious to the hospital, visible signs included: pale skin and dry mucous membranes, presumptively diagnosed as dehydration. Blood test revealed anaemia (haemoglobin 130 g/L) and hyperglycaemia (glucose 7.8 mmol/L), urinalysis showed a picture of urinary tract infection (leukocyturia and bacteriuria). The microscopic analysis of urinary sediment revealed the presence of urothelial cells and leukocytes internalized in urothelial cells. Anti-CD68 (membrane marker of macrophages) was tested by immunocytochemistry and a negative result was observed. Based on the findings phagocytosis of apoptotic cells mediated by urothelial cells was identified. This phenomenon can be observed in urinary sediment and should not be confused with a neoplastic process since it is a physiological event of cell elimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号