首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1863年,普鲁海(Prouhet)将三角形的九点圆(也称欧拉圆或费尔巴哈圆[1])定理,类比推广到垂心四面体中,得到了如下的十二点球定理:[2]定理0在垂心四面体中,以外心与垂心连线的第二个三等分点为球心,外接球面半径的三分之一为半径的球面,必通过十二个特殊点,即:四个顶点与垂心连线的第二个三等分点,四个侧面的重心,以及四条高的垂足.这个定理所说的球面,通常称为垂心四面体的普鲁海球面.最近,曾建军国老师在[3]中指出:若垂心四面体A1A2A3A4的外心为O,垂心为H,则点H满足OH=12∑i=41OAi.据此,我们可以将圆内接四边形与垂心四面体进行类比,导出一个有趣的十二点圆定理.现介绍如下,供读者赏析.本文约定:在任意四边形A1A2A3A4中,除任一顶点Aj外,以其余三顶点为顶点的三角形,称为四边形A1A2A3A4的子三角形,记作△j(j=1,2,3,4).定义设四边形A1A2A3A4内接于⊙(O,R),若点E满足OE=21∑i=41OAi(1)则点E称为四边形A1A2A3A4的欧拉圆心[4];以线段OE的第二个三等分点P为圆心、3R为半径的圆,称为四边形A1A2A3A4的普鲁海圆,记作⊙P,3R.其中,...  相似文献   

2.
有限点集V={A1,A2,,An}的所有点都在同一圆(或球面)上,我们称V为共圆(或共球)有限点集.以这些点为顶点的封闭折线A1A2A3An A1,称为圆(或球)的内接闭折线,简记为A(n).文[1]定义多面体V内接于球面S(O,R),其顶点全集为{A1,A2,,An},若点H满足1niiOH OA==∑,则点H称为多面体V的伪垂心.若点H j(1≤j≤n),满足1nj i jiOH OA OA==∑?,则点H j称为多面体V的一级顶点子集V j的伪垂心.进而推出定理1设多面体V内接于球面S(O,R),其顶点全集为{A1,A2,,An},其一级顶点子集V j的伪垂心为H j,过顶点A j作直线l j平行于OH j,则诸直线l j(j=…  相似文献   

3.
众所周知,关于三角形有如下命题定理0在三角形中,以它的外心与垂心连线的中点为圆心,外接圆半径的一半为半径的圆,必通过9个特殊点,即:3个顶点与垂心连线的中点,3条边的中点,以及3条高的垂足.这个命题通常称为“三角形的九点圆定理”,它是近代欧氏几何学中最著名的多点共圆定理之一.本文的目的是把它引申到四面体中,在四面体中建  相似文献   

4.
1.已知H是锐角△ABC的垂心,以边BC的中点为圆心、过点H的圆与直线BC交于A1、A2两点;以边CA的中点为圆心、过点H的圆与直线CA交于B1、B2两点;以边AB的中点为圆心、过点H的圆与直线船交于C1、C2两点.证明:A1、A2、B1、B2、C1、C2六点共圆.  相似文献   

5.
在拙文[1]~[4]中,我们已经揭示了圆内接闭折线垂心的众多有趣性质,这里再作点补充. 定理1 设闭折线A1A2A3…AnA1内接于⊙(0,R),其垂心为H,则 (这个等式不妨称为“垂心与外心的距离公式”.) 证明以外心O为原点建立直角坐标系xOy(图略),设顶点Ai的坐标为(x1,yi)(i=1,2,…n),垂心H的坐标为(xH,yH),则由[1]可知  相似文献   

6.
第49届IMO试题的第1题:已知H是锐角△ABC的垂心.以边BC的中点为圆心、过点H的圆与直线BC相交于A1、A2两点;以边CA的中点为圆心、过点H的圆与直线CA相交于B1、B2两点;以边AB的中点为圆心、过点H的圆与直线AB相交于C1、C2两点.证明:A1、A2、B1、B2、C1、C2六点共圆.  相似文献   

7.
在拙文[1]中,我们曾利用坐标法,将三角形垂心定理推广为定理1设闭折线A(n)内接于⊙O,其二级顶点子集V jm的垂心为H jm,过点H jm作直线A j Am的垂线l jm,则诸直线l jm(1≤j相似文献   

8.
众所周知 ,三角形的三条高所在的直线必相交于同一点 ,这个点称为三角形的垂心 .在△ABC所在的平面内 ,以它的外心O为原点建立直角坐标系xOy ,设△ABC三顶点A、B、C的坐标分别为 (x1,y1)、(x2 ,y2 )、(x3,y3) ,其垂心H的坐标为 (xH,yH) ,那么容易推得xH = 3i=1xi,yH = 3i=1yi.这就是三角形的垂心的坐标公式 .据此 ,运用类比方法 ,我们可以建立圆内接四边形的“垂心”概念 ,并探讨其性质 .定义 设四边形ABCD内接于⊙O ,以圆心O为原点建立直角坐标系xOy ,设顶点A、B、C、D的坐标分别为 (x1,y1)、(x2 ,y2 )、(x3,y3)、(x4 ,y4 ) ,…  相似文献   

9.
美国数学家R.A.约翰逊在其名著[1]中,介绍了三角形垂心的如下有趣性质:定理0三角形的高上,从垂心到边这一段的长,等于它的延长线从边到外接圆的长.如右图,设?A1A2A3的垂心为H,它的高A1D1延长后交外接圆于M1,则HD1=D1M1.本文拟应用向量方法,将这个命题类比推广到一般的球内接多面体中.为了叙述简便和节省篇幅起见,本文沿用文[2]中的有关概念和符号,而不复述它们的意义.对定理0运用类比,我们得到定理1设多面体V内接于球面S(O,R),其顶点全集为{A1,A2,,An},伪垂心为H,一级顶点子集V j的2号心为E j(1≤j≤n),线段A jH的延长线交球面S(…  相似文献   

10.
有一类关于三角形一边的中线被另一边的几等分点与这边所对顶点连线所分线段比的几何题 ,我们可借助新编九年义务教材初中《几何》第二册第 2 5 5页题17“过△ ABC的顶点 C任作一直线 ,与边 AB及中线 AD分别交于点 F和 E。求证 :AE∶ ED =2 AF∶ FB。如图 1。”进行巧思妙解。  例 1.如图 1,在△ A BC中 ,设两条中线AD 和 CF交于 E,求AE∶ ED。 (三角形重心定理 )解 :由课本题结论知 ,A E∶ED=2 AF∶ FB=2 AF∶ AF=2∶ 1。例 2 .三角形从一个顶点到对边三等分点作线段 ,过第二顶点的中线被这些线段分成连比 x∶ y∶ z,…  相似文献   

11.
定理 垂心四面体中,垂心到四面体各顶点的每线的第一个三等分点、四面体各面的垂心和重心,共12点共球,其球心在垂心四面体的欧拉线上,半径为垂心四面体的外接球半径的1/3。 证明:如图,四面体ABCD为垂心四面体,H、G、O分别为四面体的垂心、重心、外心.由文[1]知,H、G、O共线,且HG=GO.  相似文献   

12.
在拙文[1]和[2]中,我们曾将三角形垂心定理先后推广为定理1设闭折线A(n)内接于⊙O,其二级顶点子集Vjm的垂心为Hjm,过点Hmj作直线AjAm的垂线ljm,则诸直线ljm(1≤j相似文献   

13.
九点圆     
在任意的三角形中,三边的中点、三条高的垂足、三条高的交点(垂心)与三角形顶点连线的中点,这九个点共圆,这个圆称为九点圆.  相似文献   

14.
徐有祥 《数学教学》2014,(5):45-46,49
问题(第十届西部数学奥林匹克试题)如图1,AB是圆O的直径,C、D是圆周上异于A、B且在AB同侧的两点.分别过点C、D作圆的切线,它们相交于点E,线段AD与BC交于点F,直线EF与AB相交于点M.求证:E、C、M、D四点共圆.  相似文献   

15.
美国数学家R.A.约翰逊在其名著[1]中,介绍了如下两个奇妙的共圆点定理:定理1在三角形中,以高的垂足为圆心,作通过外心的圆,与垂足所在的边相交,则这样得到的6个交点在同一个圆上,圆心是这三角形的垂心.定理2在三角形中,以各边的中点为圆心,作通过垂心的圆,与这条边相交,则这样得到的6个交点在同一个圆上,圆心是这三角形的外心.这两个定理中的“6点圆”,都称为杜洛斯——凡利(Droz—Farny)圆.有趣的是,对于同一个三角形来说,这两个“6点圆”还是等圆!本文拟将定理1和定理2推广到一般圆内接闭折线中.为了叙述简便起见,本文约定:(i)符号A(n)…  相似文献   

16.
笔者最近发现,三角形有一个性质,介绍如下,请伺行指正:定理锐角三角形的垂心到三顶点的距离之和等于这个三角形外接圆与内切圆直径之和;钝角三角形垂心到两锐角顶点距离之和减去垂心到钝角顶点距离等于该三角形外接圆与内切圆直径之和.证明设三角形的三边为a、b、c,垂心为H,外接圆与内切圆半径分别为R和r.如图建立直角坐标系,则C(0,0)、A(b,0)、B(αcosCαsinC),无论是锐角还是钝角三角形,直线AH、BH的方程分别为由此得垂心坐标为应用距离公式,余弦定理及正弦定理得:于是,当△ABC为锐角三角形时|HA|注意到当△…  相似文献   

17.
大家知道:四面体的四条中线交于一点;四条高线交于一点的充要条件是:每组对棱互相垂直,这里考虑四面体的各顶点与对面三角形内心的连线,这四线共点的充要条件。定理四面体各顶点与对面三角形内心的连线共点的充要条件是:三组对棱的乘积相等。  相似文献   

18.
若四面体的四条高线交于一点,则称这点为四面体的垂心。四面体并不总有垂心。文[1]中给出四面体存在垂心的充要条件是两组对棱分别垂直。一般说来,垂心存在的四面体与三角形有更多的类似性质。本文获得  相似文献   

19.
众所周知,关于三角形有如下共点线定理: 定理1三角形的三条高(所在的三条直线)必相交于同一点. 这个点称为三角形的垂心.定理1称为三角形的垂心定理. 本文拟应用向量方法,对定理1作多方位地类比推广,导出一个更具普遍性的、关于一般圆内接闭折线之k号心的共点线定理,供读者赏析.  相似文献   

20.
1903年,A.M.Nesbitt 建立了如下关于三角形边长a、b、c的几何不等式[1] 322abcbccaab? < , (1) 本文给出Nesbitt不等式在四面体中的推广形式. 定理 设四面体1234AAAA中,顶点Ai所对的面的三角形面积为iS(1,2,3,4i=),实数l≥1,则 l34≤1234()SSSSl 2341()SSSSl 3412  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号