首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题目(苏教版数学必修(2)P103的例3)求圆x2+y2=4上的点到直线l:x-3(1/2)y+6=0距离的最小值和最大值.(易求得最大值为5,最小值为1.)1问题的提出师:谁能说说你是怎么求解的?理由是什么?生1:利用平面几何图形的特征,先求出圆心到  相似文献   

2.
一、利用距离公式例1已知x+y+1=0,则u=(x-1)2+(y-12姨)的最小值为.解如图1所示,如果将u=(x-1)2+(y-1)2看姨成是P(x,y)与B(1,1)两点间的距离,由于点P(x,y)的坐标满足x+y+1=0,所以u的最小值也就是点B(1,1)到直线x+y+1=0的距离,所以um=1+1+13姨2in=.姨22二、利用直线斜率公式例2实数x,y满足(x-2)2+y2=3,求y的最大值.x解如图2所示,设点P(x,y)为圆(x-2)2+y2=3上任一点,则y为直线O P的x斜率k.易求得km=3,ax姨即y的最大值为姨3.x三、利用单位圆例3已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是A.tancosθθ2222C.…  相似文献   

3.
利用直线与圆有公共点,能够解决许多比较复杂的数学问题.常常用到的结论有两条:其一,直线与圆有公共点的充要条件是圆心到直线的距离不大于半径;其二,直线与圆相切时只有一个公共点.1一、解决有关函数最值问题例1:求函数y=54csoinsxx+-110的最值【解】函数表达式可化为:4sinx-5ycosx-10y-1=0而sin2x+cos2x=1,所以点(cosx,sinx)是直线4μ-5yυ-10y-1=0与圆μ2+υ2=1的公共点,即圆心(0,)到直线的距离不大于圆的半径,即d=|-10y-1|√16+25y21亦即(10y+1)216+25y2,、解之得:-35y31故ymax=31;ymin=-53例2:已知x29+y42=1,求z=x-3y的最大值与最小…  相似文献   

4.
题目 如图1,已知P为椭圆C:x^2+4y^2=4上任意一点,求点P到直线l:2x+3y=6距离d的最大值与最小值.  相似文献   

5.
求形如“函数y=a-bsinxc-dcosx的最值”问题的解法较多,从这些解法中可体现出一些数学思想.一、数形结合思想例1.求函数y=1+sinx2+cosx的最小值和最大值.分析:因函数y=1+sinx2+cosx的定义域为R,所以把1+sinx2+cosx可以看为点(cosθ,sinθ)与点(-2,-1)所在直线的斜率.而点(cosθ,sinθ)的轨迹是圆x2+y2=1,因而问题就成为点(-2,-1)与圆x2+y2=1上的动点的连线的斜率最大值、最小值问题.易知,过点(-2,-1)向圆x2+y2=1所作的两条切线的斜率的最大值和最小值就是函数的最大值和最小值.如图,用平面几何的知识得出斜率kBD为所求的最小值,斜率kBC为…  相似文献   

6.
将二次函数 f(x) =ax2 bx c(a≠ 0 )在指定闭区间 [m,n]上的最大值和最小值称为闭区间上二次函数最值 .下面以实例来说明求解这类问题的 7种常用方法与技巧 .1 配方法求闭区间上二次函数最值问题的一般方法是配方法 .例 1 若双曲线 x2 - y2 =a2 (a>0 )过直线 x 2 y=m(0≤m≤ 3)与直线 2 x- y=1的交点 ,问 m取何值时 ,a取得最大值与最小值 ?解 解题关键是寻求 a关于 m的函数关系式 ,易得二直线的交点为 A(m 25 ,2 m- 15 ) ,于是 ,有 a2 =x2 - y2 =(m 25 ) 2 -(2 m- 15 ) 2 =12 5 (- 3m2 8m 3) =- 32 5 (m-43) 2 13,m∈ [0 ,3],所以当 …  相似文献   

7.
圆锥曲线是中学数学教学的重点内容之一,也是历届高考命题的热点,求解圆锥曲线问题时,学生应注意避免以下常见错误.一、忽视隐含条件例1若点P与定点F(0,2)的距离和它到直线y=7的距离比是2∶3,求动点P与定点P1(8,-2)距离的最大值.错解:设动点P(x,y)到直线y=7的距离为d,则|PF|d=2  相似文献   

8.
洪扬婷 《考试周刊》2014,(88):52-52
<正>二维形式的柯西不等式:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.上述不等式可以变形为:|ac+bd|a2+b%2姨≤c2+d%2姨,不等式的左边可以看成点(c,d)到直线ax+by=0的距离,当不等式的右边为定值时,左边有最大值.利用柯西不等式及其变形可以巧妙地解决如下最值问题.例1:求椭圆C:x216+y212=1上的点到直线l:x-2y=0的距离  相似文献   

9.
研究数形结合的思想方法时 ,有这样一道求函数最值的例题 :求函数 y =x2 -6x+ 13 -x2 -2x+ 2 的最大值 .分析 若直接从数的角度考虑 ,较为困难 .注意到函数表达式可变形为 :y = (x-3 ) 2 + ( 0 -2 ) 2 -(x-1) 2 + ( 0 -1) 2 ,从形的角度看 ,函数值y可看作是平面直角坐标系中x轴上的动点M (x ,0 )到两定点A(3 ,2 )、B(1,1)距离之差 ,即 y =|MA|-|MB| (如图 1) .由平几知识 ,当M恰好是线段AB的延长线与x轴的定点 (-1,0 )时 ,y达到最大 ,最大值为|AB| =5 .因而题中所求的最大值为 5 .有同学提问 :这个函数是否存在最小值 ?如果存在…  相似文献   

10.
本文就函数f(x)=x+k/x(k>0)的图像,性质及其变形和应用进行归纳总结并展开讨论.结论1函数f(x)=x+k/x(k>0)的图象及性质:(1)图象如右图所示:(2)性质:①是奇函数;②在区间(k,+∞)和(?∞,?k)上单调递增,在区间(?k,0),和(0,k)上单调递减;③在x>0时,有最小值2k,在x<0时,有最大值?2k;④存在两条渐近线为直线y=x和x=0.应用1试讨论y=b/a+a/b(ab≠0)的取值情况.解当ab>0时,y≥2;当ab<0时,y≤?2,评述构造函数y=x+1/x,充分利用性质③进行解题.应用2求函数y=x+4/(x?3)(x>3)的最小值.解y=x?3+4/(x?3)+3≥7,当且仅当x=5时等号成立.所以y的最小值为7.评述令…  相似文献   

11.
二册(上)17·3中例11(1):求点P(-1,2)到直线l:2x y-10=0的距离d.通过对点到直线距离的概念的理解会得到多种解法,其中本文给出以下几种.解法1:由点到直线的距离公式求解d=|2×(-1) 2-10|22 12=150=25解法2:由点到直线的距离的定义求解过点P作直线l的垂线,垂足为A,则直线PA的方程是:x-2y 5=0与2x y-10=0联立得x=3,y=4所以A(3,4)P到直线l的距离即为线段PA的长度PA=(-1-3)2 (2-4)2=20=25解法3:由点到直线的距离和两条平行直线间距离的关系求解过点P作l的平行线l′:2x y=0则P到直线l的距离即为l与l′之间的距离所以d=|0-(-10)|22 12=105=2…  相似文献   

12.
圆锥曲线定义是推导圆锥曲线方程的依据,也足解题的方法.面对一个解析几何题首先要想:“可否用圆锥曲线定义?”由此,往往町以发现快捷的通道.例1 点M与点F(0,5)的距离比它到直线y+6=0的距离小1,求点M的轨迹方程.解由题意知,点M到点F(0,5)的距离与它到直线y+5=0的距离相等,故点M的轨迹为抛物线,焦点为(0,5),准线为直线y+5=0,其方程为x2=20y.  相似文献   

13.
平移转化法例1已知椭圆x2/25+y2/9=1,直线l:4x-5y+40=0.椭圆上是否存在一点,它到直线l的距离最短?如果存在,那么最短距离是多少?  相似文献   

14.
正一、展示不同解题方法,体现合作学习的魅力一次考试,同一道题目,可能出现多种不同解法,在试卷讲评中,让学生把各种不同解法充分展示出来,对开拓学生思维,有着很好的引导作用.考题:已知x2+y2=100,求x+y的最值.此题不难,但解决方法有多种,考试过后,同学们给出了多种不同解答.学生1:换元法,设x=10cosθ,y=10sinθ则x+y=10(cosθ+sinθ)=槡10 2 sin(θ+24),显然,最大值是槡10 2,最小值是-槡10 2.学生2:数形结合法,设t=x+y,则y=-x+t.转化为求直线y=-x+t截距的最大最小值,利用圆心到  相似文献   

15.
一般地说 ,一次函数y =kx +b不存在最大值或最小值 .但是 ,当给出了自变量x的取值范围这一特殊条件后 ,函数值y就可能有最值 .例如 ,一次函数y =kx+b ,x1≤x≤x2 .若k >0 ,如图 1 ,则y值随x的增大而增大 ,当x =x1时 ,y有最小值y1,当x =x2 时 ,y有最大值y2 ;若k <0 ,如图 2 ,则y值随x的增大而减小 ,当x =x1时 ,y有最大值y1,当x =x2 时 ,y有最小值y2 .图 1图 2例 1 已知关于x的方程x2 - 2x +k =0的实数根x1、x2 ,且y =x3 1+x3 2 .试问 :y是否有最大值或最小值 ?若有 ,试求出其值 ;若没有 ,请说明理由 .( 1 999,天津市中考题 )解 :由根与系数…  相似文献   

16.
在高二解析几何教材的圆锥曲线一章中有这样的一个结论 :若P(x0 ,y0 )是圆 :x2 + y2 =r2 上的一点 ,那么过该点的圆的切线方程是x0 x + y0 y =r2 .(证明见教材 ) .问题 :若点P(x0 ,y0 )在圆x2 + y2 =r2 外(或圆内 )时 ,直线l:x0 x + y0 y =r2 是什么样的直线 ?与圆x2 + y2 =r2 有什么关系 ?不妨设点P(x0 ,y0 )不在坐标轴上 .直线l:x0 x + y0 y =r2 的斜率是kl =-x0y0(y0 ≠ 0 ) ,而kOP =y0x0(x0 ≠ 0 ) .∵klkOP =-1,∴直线l⊥OP .圆心O(0 ,0 )到直线x0 x + y0 y=r2 的距离为d =r2x20 + y20=r2|OP|.①由①可见 ,直线l与圆的关系由|…  相似文献   

17.
利用解析几何中的相关知识求解有关函数的最值问题 ,可化难为易 ,化生为熟 ,并且过程简洁而又生动形象 ,思维广阔而又富有创意 ,能使我们从中深刻领悟到数与形的完美结合和本质上的高度统一 ,感受到数学的无穷魅力 ,激发对探索美妙数学世界的向往和追求 .一、巧用两点间距离或点到直线距离两点间距离公式为 d =|x2 - x1|或 d =( x2 - x1) 2 +( y2 - y1) 2 ,故某些形如上式的函数 ,可考虑用两点间距离或点到直线距离巧解 .例 1 求函数 y =x2 +9- x2 - 2 x +5的最大值及相应的 x.解析 :原函数化为 y =( x - 0 ) 2 +( 0 - 3) 2 -( x - 1) 2 +(…  相似文献   

18.
题目 :若 x>0 ,y>0且 x+ y≤ a( x+ y )成立 ,则 a的最小值是 (  ) .( A) 22    ( B) 2( C) 2  ( D) 2 2错解 原不等式可变形为 a≥x+ yx + y,a2≥ x+ yx+ y+ 2 xy ≥x+ yx+ y+ x+ y=12 成立 ,即 a≥ 22 ,选 A.质疑 当 x=1 ,y=3时 ,2≤ 22 ( 1 +3)不成立 ,与已知矛盾 ,因而 a的最小值不是 22 .错解看似很有道理 ,问题出在哪里 ?剖析 要使 a≥ x+ yx + y成立 ,a应不小于 x+ yx + y的最大值 ,而错解中求出x+ yx + y的最小值 ,把 x+ yx + y的最小值误认为 a的最小值 ,殊不知此最小值非彼最小值 ,因而解法是错误的 .正解 因为 ( x+ y …  相似文献   

19.
2014浙江高考理数第21题:如图,设椭圆C:x2/a2+y2/b2=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标.(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.标准答案:(1)设直线l的方程为y=kx+m(k<0),由  相似文献   

20.
最值问题,也就是最大值和最小值问题.它是初中数学竞赛中的常见问题.这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度.本文以例介绍一些常见的求解方法,供读者参考.一、配方法例1(2005年全国初中数学联赛武汉CASIO杯选拔赛)2x2+4xy+5y2-4x+2y-5可取得的最小值为.解:原式=(x+2y)2+(x-2)2+(y+1)2·27·-10.由此可知,当x=2,y=-1时,有最小值-10.二、设参数法例2(《中等数学》奥林匹克训练题)已知实数x、y满足x3+y3=2.则x+y的最大值为.解:设x+y=k,易知k>0.由x3+y3=2,得(x+y)(x2-xy+y2)=2.从而,xy=13(k2-k2).由…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号