首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we intend to discuss the passivity of coupled neural networks (NNs) with reaction–diffusion terms and mixed delays. By constructing appropriate Lyapunov functional, and with the help of liner matrix inequalities, some inequality techniques, several sufficient conditions are derived to guarantee the output strictly passive, input strictly passive, passive of the proposed neural network model. Then, a stability criterion is presented according to the obtained passivity results. Moreover, the proposed neural network model herein is more general than some recent studies, which can improve and enrich the previous research results. Finally, a numerical example is presented to show the effectiveness of the theoretical criteria.  相似文献   

2.
The robust stochastic convergence in mean square is investigated for a class of uncertain Cohen–Grossberg neural networks with both Markovian jump parameters and mode-dependent time-varying delays. By employing the Lyapunov method and a generalized Halanay-type inequality, a delay-dependent condition is derived to guarantee the state variables of the discussed neural networks to be globally uniformly exponentially stochastic convergent to a ball in the state space with a pre-specified convergence rate. After some parameters being fixed in advance, the proposed conditions are all in terms of linear matrix inequalities, which can be solved numerically by employing the LMI toolbox in Matlab. Finally, an illustrated example is given to show the effectiveness and usefulness of the obtained results.  相似文献   

3.
This paper is concerned with the problem of robust synchronization of a class of complex dynamical networks with time-varying delays and reaction–diffusion terms. To reflect most of the dynamical behaviors of the system, the parameter uncertainties are considered. A sampled-data controller with m stochastically varying sampling periods whose occurrence probabilities are given constants is considered. The control objective is that the trajectories of the system by designing suitable control schemes track the trajectories of the system with sample-data control. It is shown that, through Lyapunov stability theory, the proposed sample-data controllers are successful in ensuring the achievement of robust synchronization of complex dynamical networks even in the case of uncertainity and Markovian jumping parameters. By utilizing the Lyapunov functional method, Jensen’s inequality, Wirtinger’s inequality and lower bounds theorem, we establish a sufficient criterion such that, for all admissible parameter uncertainties, the complex dynamical network is robustly synchronized. The derived criteria are expressed in terms of linear matrix inequalities that can be easily checked by using the standard numerical software. Illustrative examples are presented to demonstrate the effectiveness and usefulness of the proposed results.  相似文献   

4.
This paper is devoted to investigating the robust stochastic exponential stability for reaction-diffusion Cohen–Grossberg neural networks (RDCGNNs) with Markovian jumping parameters and mixed delays. The parameter uncertainties are assumed to be norm bounded. The delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Some criteria for delay-dependent robust exponential stability of RDCGNNs with Markovian jumping parameters are established in terms of linear matrix inequalities (LMIs), which can be easily checked by utilizing Matlab LMI toolbox. Numerical examples are provided to demonstrate the efficiency of the proposed results.  相似文献   

5.
In this paper, an auxiliary model-based nonsingular M-matrix approach is used to establish the global exponential stability of the zero equilibrium, for a class of discrete-time high-order Cohen–Grossberg neural networks (HOCGNNs) with time-varying delays, connection weights and impulses. A new impulse-free discrete-time HOCGNN with time-varying delays and connection weights is firstly constructed, and the relationship between the solutions of original systems and new HOCGNNs is indicated by a technical lemma. From which, the global exponential stability criteria for the zero equilibrium are derived by using an inductive idea and the properties of nonsingular M-matrices. The effectiveness of the obtained stability criteria is illustrated by numerical examples. Compared with the previous results, this paper has three advantages: (i) The Lyapunov–Krasovskii functional is not required; (ii) The obtained global exponential stability criteria are applied to check whether a matrix is a nonsingular M-matrix, which can be conveniently tested; (iii) The proposed approach applies to most of discrete-time system models with impulses and delays.  相似文献   

6.
This paper analyzes synchronization in finite time for two types of coupled delayed Cohen–Grossberg neural networks (CDCGNNs). In the first type, linearly coupled Cohen–Grossberg neural networks with and without coupling delays are considered, respectively. In the second type, nonlinearly coupled Cohen–Grossberg neural networks both with and without coupling delays are discussed. By designing suitable controllers and using some inequality techniques, several criteria ensuring finite-time synchronization of the CDCGNNs with linear coupling and nonlinear coupling are derived, respectively. Moreover, the settling times of synchronization in finite time for the considered networks are also predicted. In the end, the availability for the acquired finite-time synchronization conditions is confirmed by two selected numerical examples.  相似文献   

7.
《Journal of The Franklin Institute》2019,356(18):11285-11304
In this paper, the problem of exponential synchronization for inertial Cohen–Grossberg neural networks with time delays is studied. According to the concept of synchronization, a controlled response system is constructed to obtain the error systems. First, by introducing a directive Lyapunov functional, a sufficient condition is derived to ascertain the exponential synchronization of the drive and response systems based on feedback control. Moreover, by introducing a variable substitution, a sufficient condition is obtained to ensure the global exponential synchronization for the systems. Two sufficient conditions are feasible for the global exponential synchronization of the drive and response systems, and complement each other. Finally, the parameters were set for numerical simulation, two illustrative examples are provided to show the effectiveness of the obtained theoretical results, and the validity of the model was proved.  相似文献   

8.
This paper is denoted to investigating stability in mean of partial variables for stochastic reaction–diffusion equations with Markovian switching (SRDEMS). By transforming the integral of the trajectory with respect to spatial variables as the solution of the stochastic ordinary differential equations with Markovian switching (SODEMS) and using Itô formula, sufficient criteria on uniform stability in mean, asymptotic stability in mean, uniformly asymptotic stability in mean, exponential stability in mean of partial variables for SRDEMS are first derived. An example is presented to illustrate the effectiveness and efficiency of the obtained results.  相似文献   

9.
Finite-time (FT) synchronization for periodic T–S fuzzy master-slave neural networks (NNs) with distributed delays is addressed in this work. A fuzzy controller is designed for the salve NNs to synchronize the master NNs in FT and a synchronization error system (SES) is derived. Sufficient conditions are established to guarantee that the SES is FT bounded by using the mode and fuzzy basis dependent Lyapunov function. A new algorithm is proposed to obtain the suboptimal boundary of the SES to analyze how the periodic characteristics affect the system boundary. Finally, a numerical example is provided to demonstrate the validity of the fuzzy controller and the iterative algorithm for the boundary.  相似文献   

10.
This paper considers the problems of robust stochastic stabilization and robust H controller design for a class of stochastic Markovain jumping systems with mixed time delays and polytopic parameter uncertainties. Both the interval time-varying delay and distributed time delay are simultaneously considered. Some new delay-dependent sufficient conditions, which differs greatly from the most existing results, are obtained based on the decoupling method and some advanced techniques. A numerical example is provided to illustrate the effectiveness of the proposed criteria.  相似文献   

11.
The sampled-data HH filtering for a continuous-time Takagi–Sugeno fuzzy system with an interval time-varying state delay is investigated, where the measurement outputs from the plant to the filter are assumed to be sampled at discrete instants with a variable period. Firstly, by means of a newly proposed inequality bounding technique and a new Lyapunov–Krasovskii functional, the fuzzy sampled-data HH filtering performance analysis is carried out such that the resultant filter error system is asymptotically stable with a prescribed HH attenuation performance index. Secondly, sufficient conditions on the existence of fuzzy sampled-data HH filters are derived in the simultaneous presence of the time-varying state delay and the variable sampling period. The proposed bounding inequality lies in its more tightness and alleviates the enlargement of some inverse “coefficients” resulting from the utilization of the well-known Jensen integral inequality  . Compared with some existing Lyapunov–Krasovskii functionals, more information about the relationship among the current state and its delayed state is considered. The upper bound of the derivative of the time-varying state delay is not required to be less than one. Different from some existing results in the literature, by applying the proposed results, each different value of such an upper bound (greater than one) leads to a different HH disturbance attenuation level. Finally, a numerical example and a modified continuous stirred tank reactor system are given to show the effectiveness of the proposed results.  相似文献   

12.
In this issue, the robust synchronization for a class of uncertain Cohen–Grossberg neural networks is studied, in which neuron activations are modelled by discontinuous functions(or piecewise continuous functions). Pinning state-feedback and adaptive controllers are designed to achieve global robust exponential synchronization and global robust asymptotical synchronization of drive-response-based discontinuous Cohen–Grossberg neural networks. By applying the theory of non-smooth analysis theory and the method of generalized Lyapunov functional, some criteria are given to show that the coupled discontinuous Cohen–Grossberg neural networks with parameter uncertainties can realized global robust synchronization. Some examples and numerical simulations are also shown to verify the validity of the proposed results.  相似文献   

13.
In this paper, we propose and study a stochastic predator–prey model with herd behavior. Firstly, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then we establish sufficient conditions for extinction of the predator population in two cases, that is, the first case is the prey population survival and the predator population extinction; the second case is all the prey and predator populations extinction. Finally, some examples together with numerical simulations are introduced to illustrate the theoretical results.  相似文献   

14.
This paper deals with the problem of stabilization by state feedback control of Takagi–Sugeno (T–S) fuzzy discrete-time systems with multiple fixed delays while imposing positivity in closed-loop. The obtained results are presented under linear programming (LP) form. In particular, the synthesis of state feedback controllers is first solved in terms of Linear programming for the unbounded controls case. This result is then extended to the stabilization problem by nonnegative controls, and stabilization by bounded controls. The stabilization conditions are derived using the single Lyapunov–Krasovskii functional (LKF). An example of a real plant is studied to show the advantages of the design procedure. A comparison between linear programming and LMI approaches is presented.  相似文献   

15.
In this paper, the boundary stabilization problem of a class of unstable reaction–advection–diffusion (RAD) systems described by a scalar parabolic partial differential equation (PDE) is considered. Different the previous research, we present a new gradient-based optimization framework for designing the optimal feedback kernel for stabilizing the unstable PDE system. Our new method does not require solving non-standard Riccati-type or Klein–Gorden-type PDEs. Instead, the feedback kernel is parameterized as a second-order polynomial whose coefficients are decision variables to be tuned via gradient-based dynamic optimization, where the gradients of the system cost functional (which penalizes both kernel and output magnitude) with respect to the decision parameters are computed by solving a so-called “costate” PDE in standard form. Special constraints are imposed on the kernel coefficients to ensure that the optimized kernel yields closed-loop stability. Finally, three numerical examples are illustrated to verify the effectiveness of the proposed approach.  相似文献   

16.
In this work, we probes the stability results of H state estimation for discrete-time stochastic genetic regulatory networks with leakage, distributed delays, Markovian jumping parameters and impulsive effects. Here, we focus to evaluate the true absorption of mRNAs and proteins by calculating the H estimator in such a way that the estimation error dynamics is stochastically stable during the completion of the prescribed H disturbance attenuation level. In favor of decreasing the data communion in trouble, the H system accept and evaluate the outputs that are only transferred to the estimator when a certain case is acroses. Further, few sufficient conditions are formulated, by utilizing the Lyapunov–Krasovskii functional under which the estimation error system is stochastically stable and also satisfied the H attainment constraint. The estimator is obtained in terms of linear matrix inequalities (LMIs) and these LMIs are attainable, only if the estimator gains can be absolutely given. In addition to that, two numerical examples are exposed to establish the efficiency of our obtained results.  相似文献   

17.
In this paper, we consider the problem of mixed H and passivity control for a class of stochastic nonlinear systems with aperiodic sampling. The system states are unavailable and the measurement is corrupted by noise. We introduce an impulsive observer-based controller, which makes the closed-loop system a stochastic hybrid system that consists of a stochastic nonlinear system and a stochastic impulsive differential system. A time-varying Lyapunov function approach is presented to determine the asymptotic stability of the corresponding closed-loop system in mean-square sense, and simultaneously guarantee a prescribed mixed H and passivity performance. Further, by using matrix transformation techniques, we show that the desired controller parameters can be obtained by solving a convex optimization problem involving linear matrix inequalities (LMIs). Finally, the effectiveness and applicability of the proposed method in practical systems are demonstrated by the simulation studies of a Chua’s circuit and a single-link flexible joint robot.  相似文献   

18.
This paper studies the stability of linear continuous-time systems with time-varying delay by employing new Lyapunov–Krasovskii functionals. Based on the new Lyapunov–Krasovskii functionals, more relaxed stability criteria are obtained. Firstly, in order to coordinate with the use of the third-order Bessel-Legendre inequality, a proper quadratic functional is constructed. Secondly, two couples of integral terms {t?htsx(s)ds,stx(s)ds} and {t?hMsx(s)ds,st?htx(s)ds} are involved in the integral functionals t?htt(·)ds and t?hMt?ht(·)ds, respectively, so that the coupling information between them can be fully utilized. Finally, two commonly-used numerical examples are given to demonstrate the effectiveness of the proposed method.  相似文献   

19.
The role of e-government in combating corruption is an active area of research in Information Systems (IS). Drawing on the value framework for assessing e-government impact, and grounding our discussion on three theoretical perspectives, namely, (1) technological determinism theory, (2) general deterrence theory, and (3) Habermas’ public sphere perspective, we seek to explore how the diffusion of virtual social networks (VSNs) influences the relationships among e-government maturity, government administrative effectiveness, and corruption in a country. Our analyses based on publicly available archival data substantiate the (1) indirect relationships between e-government maturity in a country and corruption in three branches of its government (i.e., legislature, executive, and judiciary) through government administrative effectiveness, (2) interaction effect of VSN diffusion on the relationship between e-government maturity in a country and its government administrative effectiveness, and (3) interaction effects of VSN diffusion on the relationships between government administrative effectiveness in a country and its corruption dimensions. The key contributions of this research include the establishment of the (1) role of e-government in combating corruption in three branches of the government, and (2) idea of the public sphere in the context of VSN diffusion, and the subsequent exploration of its effects on e-government outcomes of a country.  相似文献   

20.
This paper develops a novel stability analysis method for Takagi–Sugeno (T–S) fuzzy systems with time-varying delay. New delay-dependent stability criteria in terms of linear matrix inequalities for time-varying delayed T–S fuzzy systems are derived by the newly proposed augmented Lyapunov–Krasovski (L–K) functional. This functional contains the cross terms of variables and quadratic terms multiplied by a higher degree scalar function. Different from previous results, our derivation applies the idea of second-order convex combination, and the property of quadratic convex function without resorting to the Jensen's inequality. Two numerical examples are provided to verify the effectiveness of the presented results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号