首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
由平面直角坐标和极坐标的互化公式x=ρcosθ、y=ρsinθ,可得极坐标系中两点P_1(ρ_1,θ_1)、P_2(ρ_2,θ_2)所决定的直线的斜率公式为: K_(p_1P_2)=(ρ_2sinθ_2)-ρ_1sinθ_1)/(ρ_2cosθ_2)-ρ_1cosθ_1)。本文拟应用这一公式来证明平面几何中有关直线互相垂直的一些问题。  相似文献   

2.
本文应用极坐标系中过P_1(ρ_1,θ_1),P_2(ρ_2,θ_2)两点的直线方程:sin(θ_2-θ_1)/ρ=sin(θ_2-θ)/ρ_1 sin(θ-θ_1)/ρ_2(ρ_1≠0,ρ_2≠0)来证明几何中关于线段相等的竞赛题。这一直线极坐标两点式可应用坐标互化公式:x=ρcosθ,y=ρsinθ代人直角坐标系两点方程:(x-x_1)/(y-y_1)=(x_2-x_1)/(y_2-y_1)中,通过三角恒等变形得到。例 1 以等边△ABC的边BC作直径向形外作半圆。在这半圆上取点K和L分半圆  相似文献   

3.
立体几何命题中,求二面角的值是一种常见而且重要的问题。一般的做法是先找出二面角的平面角再计算。本文拟给出一个直接求二面角的公式,并讨论一些相关问题。 定理 设二面角M-AB-N的大小为a,P∈AB,D∈平面N,C∈平面M,∠CPB=θ_1,∠DPB=θ_2,∠CPD=θ,则有 cosθ-cosθ_1cosθ_2 证明:如图1,作AB的垂面,分别交PC、AB、PD于C、E、D.则∠CED=a,∠CEP=∠DEP=90°.设PE=x,从而有PC=xsecθ_1,EC=xtgθ_1,PD=xsecθ_2,DE=xtgθ_2. 在△PCD与△ECD中,分别用余弦定理求CD~2,得整理得 应用此定理便可直接求出二面角的值,请看下面的例子。  相似文献   

4.
<正>有奖征解[1]对于任意给定的常数ρ≠0,ρ∈R,如果等式sinρθ+cosρθ+(sinθcosθ)ρ+1/sinρθ+cosρθ=2(2)ρ+(2)ρ2+(12)ρ(0<θ<π2)成立,求证sinθ+cosθ=2.证明显然,当ρ=2时,由已知等式化简,可得sinθcosθ=1/2,所以(sinθ+cosθ)2=2.又  相似文献   

5.
运用极坐标法证明这类问题时,主要利用两点p_1(ρ_1,θ_1)、p_2(ρ_2,θ_2)间的距离公式:|p_1p_2|=(p_1~2+p_2~2-2ρ_1ρ_2cos(θ_1-θ_2))~(1/2)和过这两点的直线p_1p_1的方程:sin(θ_2-θ_1)/ρ=sin(θ_2-θ)/ρ_1+sin(θ-θ_1)/ρ_2。这一公式和方程都可利用坐标互化公式:x=pcosθ、y=ρsinθ代入直角坐标系的相应公式和方程中,结合三角知识得到, 这类问题的证法和步骤是: 第一步,首先按照几何图肜的特点,适当建立极坐标系,并根据题设,设置有关各点的坐标; 第二步,再应用上述公式和方程求出有关线段的  相似文献   

6.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱所成的锐角分别为θ_1和θ_2且θ_1,θ_2具有公共边,则有: cosθ=cosθ_1cosθ_2 sinθ_1sinθ_2cosφ。当φ=90°时,公式为cosθ=cosθ_1cosθ_2。证明: 如图,∠BAC=θ,∠BAO=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=α,  相似文献   

7.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点A分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱为公共边所成的角分别为θ_1和θ_2,则有: cosθ=cosθ_1 cosθ_2+sinθ_1 sinθ_2 coφ 当印φ=90°时,公式为cosθ=cosθ_1 cosθ_2 证明:(设φ,θ_1,θ_2均为锐角) 如图,∠BAC=θ,∠BAQ=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=a,  相似文献   

8.
画双组线ρ~2=2α~2cos2θ的图形,一般用列表描点法,这里介绍用直尺和圆规作图。分析:ρ~2=2α~cos2θρ~2=2α~2(cos~2θ-sin~2θ)ρ~2=(2~(1/2)acosθ)~2-(2~(1/2)αsinθ)~2ρ~2+(2~(1/2)αsinθ)~2=(2~(1/2)acosθ)~2因此,需要构造以长2~(1/2)acoθ~(1/2)(-1/2π<θ<1/2π)为斜边,长ρ和2~(1/2)asinθ~(1/2)为直角边的直角三角形。作法:如图,在极轴上取点A,使OA=2~(1/2)a(a>o),以OA为直径画圆O′,  相似文献   

9.
高中《立体几何》(必修) P_(117)第3题:如图1,AB 和平面 a所成的角是θ_1,AC 在平面α内,AC 和 AB 的射影AB′成角θ_2,设∠ABC=θ.求证:cosθ_1·cosθ_2=cosθ.证明略.显然,题中的θ_1、θ_2、θ都是锐角;由余弦函数的单调性知,cosθ_1>cosθ,且cosθ_2>cosθ.于是θ_1  相似文献   

10.
正1、如图:已知二面角α-MN-β,A∈MN,AB(?)α,AC(?)β,设∠BAN=θ_1,∠CAN=θ_2,二面角α-MN-β的大小为θ_3,∠BAC=θ,那么cosθ=cosθ_1cosθ_2+sinθ_1sinθ_2cosθ_3证明:如图(一)1°、当θ_1、θ_2均为锐角时,在AB上取一点E(异于点A),在平面α内作EG⊥MN,垂足为G,在平面β内作GF⊥MN  相似文献   

11.
借助空间向量,很容易推导出二面角有以下两个计算公式.(1)如图1,AB、AC、AD是空间自A引出的三条射线,所成角分别为θ1,θ2和θ,可求得二面角B-AC-D的大小(用θ1,θ2和θ的三角函数表示)解:作BC⊥AC于C,DE⊥AC于E,图1则BC和DE夹角度数即为二面角B-AC-D度数.设AB=a,AD=b.BC=BA AC,DE=DA AE,∴BC·DE=(BA AC)·(DA AE).asinθ1bsinθ2cos(BC·DE)=abcosθ abcosθ2cos(π-θ1) acosθ1bcos(π-θ2) acosθ1bcosθ2=abcosθ-abcosθ2cosθ1-acosθ1bcosθ2 acosθ1bcosθ2∴cos(BC,DE)=cosθsi-ncθo1ssiθn1θc2osθ…  相似文献   

12.
高中《立体几何》(必修本)P_(117)总复习参考题第3题.如图1,AB 和平面α所成的角为θ_1,AC在平面α内,AC 和 AB 的射影AB′成角θ_2,设∠BAC=θ.求证:cosθ_1·cosθ_2=cosθ.本题只要利用三垂线定理(或逆定理)便可证明.由此不难得到下面两个结论:(1)公式成立的充要条件为角θ_1,θ_2所在的  相似文献   

13.
高中数学课本第二册第189页有这样一道习题: “长2a的线段,其端点在两个直角坐标轴上移动,从原点作这线段的垂线,垂足为M,求M的轨迹的极坐标方程,再化为直角坐标方程。”教学参考书从AB在第一象限的情况得出ρ=2acosθ·sinθ=asin2θ然后叙述,“设AB在其它象限,可得与ρ=asin2θ相同的极坐标方程。”在化为直角坐标时,两边同乘以ρ~2得ρ~3=2a·p sinθ·p cosθ求出曲线的直角坐标方程为  相似文献   

14.
错在哪里     
题:曲线C_1的方程是ρ=cosθ,曲线C_2的方程是ρ=1 cosθ,求曲线C_1与C_2交点个数.解 两曲线方程联立 ρ=cosθρ=1 cosθ得:cosθ=1 cosθ,即1=0,亦即θ无解,所以C_1与C_2的交点个数为0个.解答错了!错在哪里?错在忽视了极点的极角的任意性.  相似文献   

15.
立体几何中有一道习题 ,若用该题的结论来解课本中的其他习题 ,比常规解法显得简便得多 .先看该题 :题目 AB和平面α所成的角是θ1 ,AC在平面α内 ,AC和AB的射影AB′成角是θ2 ,设∠BAC =θ ,求证 :cosθ1 ·cosθ2 =cosθ .证明 如图 1 ,过AB上一点D向平面α作垂线DE ,垂足为E ,显然点E在直线AB′上 ,过E向AC作垂线EF ,垂足为F ,连结D、F ,根据三垂线定理 ,AC ⊥DF .在Rt△ADE中 ,cosθ1 =AEAD,在Rt△AEF中 ,cosθ2 =AFAE,在Rt△ADF中 ,cosθ =AFAD,∴cosθ1 ·cosθ2 =AEAD·AFAE =AFAD =cosθ.结论得证 .…  相似文献   

16.
立体几何课本第117页有一道习题:如图1,AB和平面α所成角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1·cosθ_2=cosθ(1)。此题证明并不难,利用三垂线定理和直角三角形中的边角关系,即可证得。值得指出的是可以引导学生从这个等式中学到更多的东  相似文献   

17.
在曲线的极坐标方程化到曲线的直角坐标方程时,常用到ρ~2=x~2+y~2。故ρ=±(x~2+y~2)~(1/2)。怎样确定“+”、“-”号?现在举例说明如下: 1.用ρ=(x~2+y~2)~(1/2)的情况。例1.化极坐标方程e~ρ=2+cosθ为直角坐标方程。解.因为2+cosθ≥1,所以原方程中ρ≥0,因此ρ=(x~2+y~2)~(1/2)。由e~ρ=2+cosθ得ρe~ρ=2ρ+ρcosθ。从而原方程可化为 (x~2+y~2)~(1/2)e~((x~2+y~2)~(1/2))=2(x~2+y~2)~(1/2)+x。例2.把极坐标方程ρ=1+cosθ化为直角坐标方程。  相似文献   

18.
统编高中数学第二册P_(100)第九题,如图,AB和平面a所成的角是θ_1,AC在平面a内,AC和AB的射影AB成角θ_2,设∠BAC=θ,则 cosθ=cosθ_1·cosθ_2(*) 其证明不难,但运用有一定的广泛性。兹举凡例说明之。例1:已知一个直角三角形的两直角边长为a、b,把它沿斜边上的高折成直二面角,求两边夹角的余弦  相似文献   

19.
如图1,△ABC的角A,B,C所对之边分别为a,b,c.AD,BE,CF为三条高,H为垂心,则△DEF是垂足三角形.又命R和Δ分别为△ABC的外接圆半径和面积,文[1]给出了垂足三角形的周长l0和面积Δ0的公式:l0=4Rsin Asin Bsin C,(1)Δ0=2Δcos Acos Bcos C.(2)可惜其证明太长,现简证如下:先证(1)式.注意到B,C,E,F四点共圆,故有∠AFE=∠C.在△AEF中运用正弦定理,有EFsin A=sin∠AEAFE=cscions C A,所以EF=sinc C·sin Acos A.至此,EF与l0有两种表达式:其一,由于sinc C=sina A,所以EF=acos A.同理,FD=bcos B,DE=ccos C,因而l0=acos A b…  相似文献   

20.
本文主要研究用极坐标系中两点P_1(P_1,θ_1)、P_2(P_2,θ_2)间的距离公式:P_1P_2│=(p_1~2+p_2~2-2p_1p_2cos(θ_1-θ_2))~(1/2)和过这两点的直线P_lP_2的斜率公式:Kp_1p_2=(p_2sinθ_2-p_1sinθ_1)/(p_2cosθ_2-p_1cosθ_1),及过这两点的直线方程:sin(θ_2-θ_1)/p=sin(θ_2-θ)/p_1+sin(θ-θ_1)/p_2 (p_1≠0、p_2≠0)来对部分几何题进行证明.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号