首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper addresses the problem of the delay-dependent stability for neutral Markovian jump systems with partial information on transition probability. The time delays discussed in this paper are time-varying delays. Combined the new constructed Lyapunov functional with the introduced free matrices, and using the analysis technique of matrix inequalities, the delay-dependent stability conditions are obtained. The obtained results are formulated in terms of LMIs, which can be easily checked in practice by Matlab LMI control toolbox. Three numerical examples are given to show the validity and potential of the developed criteria.  相似文献   

2.
This paper deals with the problems of robust delay-dependent stability and H analysis for Markovian jump linear systems with norm-bounded parameter uncertainties and time-varying delays. In terms of linear matrix inequalities, an improved delay-range-dependent stability condition for Markovian jump systems is proposed by constructing a novel Lyapunov-Krasovskii functional with the idea of partitioning the time delay, and a sufficient condition is derived from the H performance. Numerical examples are provided to demonstrate efficiency and reduced conservatism of the results in this paper.  相似文献   

3.
This paper deals with the stochastically asymptotic stability in the mean square for a new class of stochastic neural networks of neutral type with both Markovian jump parameters and mixed time delays. The jumping parameters are modeled as a continuous-time, finite-state Markov chain. Based on the Lyapunov–Krasovskii functional, stochastic analysis theory and the delay-fractioning approach, the stochastically asymptotic stability of the considered neural network has been achieved by solving some linear matrix inequalities, which can be easily facilitated by using the standard numerical software. The obtained results are shown to be much less conservative via constructing a new Lyapunov–Krasovskii functional and the idea of “delay fractioning”. Finally, four numerical examples are provided to show the effectiveness of the proposed method.  相似文献   

4.
This paper deals with the exponential stability problem for a class of neutral singular systems with Markovian jump parameters. The considered systems involve time-varying delays not only in their state but also in their derivatives of state. By using the Lyapunov–Krasovskii functional method, some sufficient conditions are derived, which ensure that the considered systems are regular, impulse-free and exponentially stable. Finally, some numerical examples are employed to demonstrate the effectiveness of the obtained approaches.  相似文献   

5.
This paper discusses the stabilization criteria for stochastic neural networks of neutral type with both Markovian jump parameters. First, delay-dependent conditions to guarantee the globally exponential stability in mean square and almost surely exponential stability of such systems are obtained by combining an appropriate constructed Lyapunov–Krasovskii functional with the semi-martingale convergence theorem. These conditions are in terms of the linear matrix inequalities (LMIs), which can be some less conservative than some existing results. Second, based on the obtained stability conditions, the state feedback controller is designed. Finally, four numerical examples are provided to illustrate the effectiveness and significant improvement of the proposed method.  相似文献   

6.
In this paper, finite-time synchronization problem is considered for a class of Markovian jump complex networks (MJCNs) with partially unknown transition rates. By constructing the suitable stochastic Lyapunov–Krasovskii functional, using finite-time stability theorem, inequality techniques and the pinning control technique, several sufficient criteria have been proposed to ensure the finite-time synchronization for the MJCNs with or without time delays. Since finite-time synchronization means the optimality in convergence time and has better robustness and disturbance rejection properties, this paper has important theory significance and practical application value. Finally, numerical simulations illustrated by mode jumping from one mode to another according to a Markovian chain with partially unknown transition probability verify the effectiveness of the proposed results.  相似文献   

7.
This paper studies the moment exponential stability analysis of a class of Markovian switching integral delay systems (MSIDSs). The existence, uniqueness and stability of the solution are discussed firstly. Secondly, by selecting appropriate Lyapunov-Krasovskii (L-K) functionals, delay-dependent sufficient conditions are given such that the general form of MSIDSs and the special form of MSIDSs having multiple delays are mean square exponentially stable respectively. The results are then generalized to robust stability of MSIDSs having multiple delays with uncertain parameters. Finally, numerical examples are given to illustrate the effectiveness of the proposed theoretical results.  相似文献   

8.
This paper investigates the problem of stochastic stability and stabilization of stochastic Markovian jump delay systems (SMJDSs) based on LaSalle theorem. The time delays are assumed to be time-varying and numerous stochastic disturbances are considered. Attention is focused on the design of the mode-dependent state feedback controller for SMJDSs based on LaSalle theorem such that the closed-loop SMJDSs are almost surely asymptotically stable. The sufficient conditions for the solvability of the state feedback control problem are obtained in terms of linear matrix inequalities (LMIs). When the LMIs are feasible, the desired state feedback controller is also given. Two numerical examples including the vertical take-off and landing (VTOL) helicopter system are employed to demonstrate the effectiveness and usefulness of the method proposed in this paper  相似文献   

9.
In this paper, the problem of stochastic stability analysis is considered for piecewise homogeneous Markovian jump neural networks with both discrete and distributed delays by use of linear matrix inequality (LMI) method. Based on a Lyapunov functional that accounts for the mixed time-delays, a delay-dependent stability condition is given, which is formulated by LMIs and thus can be easily checked. Some special cases are also investigated. Finally, a numerical example is given to show the validness of the proposed result.  相似文献   

10.
This paper is concerned with the robust sliding mode control (SMC) problem for a class of uncertain discrete-time Markovian jump systems with mixed delays. The mixed delays consist of both the discrete time-varying delays and the infinite distributed delays. The purpose of the addressed problem is to design a sliding mode controller such that, in the simultaneous presence of parameter uncertainties, Markovian jumping parameters and mixed time-delays, the state trajectories are driven onto the pre-defined sliding surface and the resulting sliding mode dynamics is stochastically stable in the mean-square sense. A discrete-time sliding surface is firstly constructed and an SMC law is synthesized to ensure the reaching condition. Moreover, by constructing a new Lyapunov–Krasovskii functional and employing the delay-fractioning approach, a sufficient condition is established to guarantee the stochastic stability of the sliding mode dynamics. Such a condition is characterized in terms of a set of matrix inequalities that can be easily solved by using the semi-definite programming method. A simulation example is given to illustrate the effectiveness and feasibility of the proposed design scheme.  相似文献   

11.
The robust stochastic convergence in mean square is investigated for a class of uncertain Cohen–Grossberg neural networks with both Markovian jump parameters and mode-dependent time-varying delays. By employing the Lyapunov method and a generalized Halanay-type inequality, a delay-dependent condition is derived to guarantee the state variables of the discussed neural networks to be globally uniformly exponentially stochastic convergent to a ball in the state space with a pre-specified convergence rate. After some parameters being fixed in advance, the proposed conditions are all in terms of linear matrix inequalities, which can be solved numerically by employing the LMI toolbox in Matlab. Finally, an illustrated example is given to show the effectiveness and usefulness of the obtained results.  相似文献   

12.
In this paper, an observer-based fault-tolerant control (FTC) method is proposed for a class of networked control systems (NCSs) with transfer delays. Markov chain is employed to characterize the transfer delays. Then, such kind of networked control systems are modelled as Markovian jump systems. An observer-based FTC scheme using the delayed state information and the estimated fault value is presented to guarantee the stability of the faulty systems. An inverted pendulum example is used to illustrate the efficiency of the proposed method.  相似文献   

13.
In this paper, the pth moment exponential stability for a class of impulsive stochastic functional differential equations with Markovian switching is investigated. Based on the Lyapunov function, Dynkin formula and Razumikhin technique with stochastic version as well as stochastic analysis theory, many new sufficient conditions are derived to ensure the pth moment exponential stability of the trivial solution. The obtained results show that stochastic functional differential equations with/without Markovian switching may be pth moment exponentially stabilized by impulses. Moreover, our results generalize and improve some results obtained in the literature. Finally, a numerical example and its simulations are given to illustrate the theoretical results.  相似文献   

14.
This paper deals with the stability and dissipative problem of a class of stochastic hybrid system. The system under study involves Markovian jump, impulsive effects and time delay, which are often encountered in practice and are the sources of instability. Our attention is focused on analysis of whether the stochastic hybrid system with time-delay is stochastically asymptotically stable and strictly (Q, S, R) dissipative. By introducing an extra artificial time instance, the equivalent system is obtained and the sufficient conditions are derived by using linear matrix inequality (LMI) techniques. The main results of this paper unify the existing results on H control.  相似文献   

15.
In this paper, the problems of stochastic finite-time stability and stabilization of discrete-time positive Markov jump systems are investigated. To deal with time-varying delays and switching transition probability (STP), stochastic finite-time stability conditions are established under mode-dependent average dwell time (MDADT) switching signal by developing a stochastic copositive Lyapunov-Krasovskii functional approach. Then a dual-mode dependent output feedback controller is designed, thus stochastic finite-time stabilization is achieved based on linear programming technique. Finally, two examples are given to show the effectiveness of our results.  相似文献   

16.
In this paper, the global exponential robust stability is investigated for Cohen-Grossberg neural network with time-varying delays and reaction-diffusion terms, this neural network contains time-invariant uncertain parameters whose values are unknown but bounded in given compact sets. Neither the boundedness and differentiability on the activation functions nor the differentiability on the time-varying delays are assumed. By using general Halanay inequality and M-matrix theory, several new sufficient conditions are obtained to ensure the existence, uniqueness, and global exponential robust stability of equilibrium point for Cohen-Grossberg neural network with time-varying delays and reaction-diffusion terms. Several previous results are improved and generalized, and three examples are given to show the effectiveness of the obtained results.  相似文献   

17.
The H filtering problem for distributed parameter systems with stochastic switching topology is investigated in this paper based on event-triggered control scheme. The switching topology which subjects to a Markovian chain is considered in filter design because of the communication uncertainty of practical networks. An event-triggered mechanism as a sampling scheme is developed aiming at the benefit of reducing the computation load or saving the limited network resources. Based on some novel integral inequalities, the improved delayed method is proposed for the H filtering control problem with event-triggered scheme. Moreover, by employing stochastic stability theory, filters with Markovian jump parameters are designed to guarantee that the stochastically mean square stability and H performance of the underlying error system. Finally, in order to illustrate the applicability of the obtained results, numerical examples are presented.  相似文献   

18.
This paper investigates the problem for stability of neutral-type dynamical neural networks involving delay parameters. Different form the previously reported results, the states of the neurons involve multiple delays and time derivative of states of neurons include discrete time delays. The stability of such neural systems has not been given much attention in the past literature due to the difficulty of finding Lyapunov functionals which are suitable for stability analysis of this type of neural networks. This paper constructs a generalized Lyapunov functional by introducing new terms into the well-known Lyapunov functional that enables us to conduct a theoretical investigation into stability analysis of delayed neutral-type neural systems. Based on this modified novel Lyapunov functional, sufficient criteria are derived, which guarantee the existence, uniqueness and global asymptotic stability of the equilibrium point of the neutral-type neural networks with multiple delays in the states and discrete delays in the time derivative of the states. The applicability of the proposed stability conditions rely on testing two basic matrix properties. The constraints impose on the system matrices are determined by using nonsingular M-matrix condition, and the constraints imposed on the coefficients of the time derivative of the delayed state variables are derived by exploiting the vector-matrix norms. We also note that the obtained stability conditions have no involvement with the delay parameters and expressed in terms of nonlinear Lipschitz activation functions. We present a constructive numerical example for this class of neural networks to give a systematic procedure for determining the imposed conditions on the whole system parameters of the delayed neutral-type neural systems.  相似文献   

19.
This paper presents an adaptive event-triggered filter of positive Markovian jump systems based on disturbance observer. A new adaptive event-triggering mechanism is constructed for the systems. A positive disturbance observer is designed for the systems to estimate the disturbance. A distributed output model of each subsystem of positive Markovian jump systems is introduced. Then, an adaptive event-triggering distributed filter is designed by employing stochastic copositive Lyapunov functions. All presented conditions are solvable in terms of linear programming. Under the designed disturbance observer and the distributed filter, the corresponding error system is stochastically stable. The filter design approach is also developed for discrete-time positive Markovian jump systems. The contribution of the paper lies in that: (i) A new adaptive event-triggering mechanism is established for positive systems, (ii) A positive disturbance observer is designed for the disturbance of positive Markovian jump systems, and (iii) The designed distributed filter can guarantee the stochastic stability of the error while existing filters in literature only achieve the stochastic gain stability of the error. Finally, two examples are given to illustrate the effectiveness of the proposed design.  相似文献   

20.
In this paper, a hybrid triple delayed prey predator bioeconomic system with prey refuge and Lévy jumps is established, where both maturation delay for prey and predator population and gestation delay for predator population are considered. For deterministic system, positivity and uniform permanence of solution are discussed. Local stability of deterministic system around interior equilibrium is investigated due to variations of triple time delays. For stochastic system without time delay, sufficient conditions for stochastically ultimate boundedness and stochastic permanence are discussed. Existence of stochastic Hopf bifurcation and stochastic stability are investigated. For stochastic system with triple time delays, existence and uniqueness of global positive solution are studied. Finally, combined dynamic effects of triple time delays and Lévy jumps on the hybrid stochastic system are discussed by constructing appropriate Lyapunov functions. Numerical simulations are supported to illustrate theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号