首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基本不等式设a≥0,b≥0,则a+b/2≥√ab(当且仅当a=b时等号成立).最值原理设x>0,y>0.(1)若x+y=S(定值),则当且仅当x=y时,xy取得最大值S2/4;(2)若xy=P(定值),则当且仅当x=y时,x+y取得最大值2√P.  相似文献   

2.
文章应用平均值不等式x+y≥2(xy)~1/2(x>0,y>0)求极值的一些常用技巧。  相似文献   

3.
一个不等式的下界估计   总被引:2,自引:0,他引:2  
《数学通报》2 0 0 2年 8月号问题 1 388为 :已知 x>0 ,y>0 ,且 x+ y=1 ,求证 :( x + y ) ( 11 + x+ 11 + y)≤ 4 33.( 1 )本文旨在给出不等式 ( 1 )左式的下界估计 .定理 若 x>0 ,y>0 ,且 x + y=1 ,则( x + y ) ( 11 + x+ 11 + y) >1 +22 . ( 2 )证明 令 u=xy,则 0 ( 1 + 22 ) 2 ( 1 + 2 u) ( 32 + u2 + 22 + u2 ) >32 + 2 ( 1 + 2 u) ( 3+ 2 2 + u2 ) >( 32 +2 ) ( 2 + u2 ) 6 u+ 2 ( 1 + 2 u) 2 + u2 >( 32+ 2 ) u2 + 2 2 .( * )∵ ( 32 + 2 ) u≤ ( 32 + 2 )×…  相似文献   

4.
代数基本不等式指的是:x+y≥2xy~(1/2)(x>0,y>0,当且仅当x=y时,取“=”号),即两个正数的几何平均数为定值,当两数相等时,它们的算术平均数有最小值,这我们称为定积求和的最小值原理.两个正数的算术平均数为定值,当两数相等时,它  相似文献   

5.
题目 :若 x>0 ,y>0且 x+ y≤ a( x+ y )成立 ,则 a的最小值是 (  ) .( A) 22    ( B) 2( C) 2  ( D) 2 2错解 原不等式可变形为 a≥x+ yx + y,a2≥ x+ yx+ y+ 2 xy ≥x+ yx+ y+ x+ y=12 成立 ,即 a≥ 22 ,选 A.质疑 当 x=1 ,y=3时 ,2≤ 22 ( 1 +3)不成立 ,与已知矛盾 ,因而 a的最小值不是 22 .错解看似很有道理 ,问题出在哪里 ?剖析 要使 a≥ x+ yx + y成立 ,a应不小于 x+ yx + y的最大值 ,而错解中求出x+ yx + y的最小值 ,把 x+ yx + y的最小值误认为 a的最小值 ,殊不知此最小值非彼最小值 ,因而解法是错误的 .正解 因为 ( x+ y …  相似文献   

6.
在一个涉及多个变量的问题中,若能适当地选取其中的一个变量作为主变量(也叫主元),突出其作用,则能使问题顺利得到解决.一、从整体角度选取例1已知x>0,y>0且x+y=1,求x2+y2-x2y2的取值范围.分析这里以x、y中的任意一个为主元,都会给解题带来麻烦.现取“xy”这一整体作主元.解∵x>0,y>0且x+y=1,∴2xy√≤1.∴0m>1,t>1,求证:logntmtm>…  相似文献   

7.
一个数学问题的再探讨   总被引:1,自引:1,他引:0  
1 问题 《数学通报》2002年8月号问题1388为: 已知x>0,y>0,且x+y=1,求证 文[1]给出了不等式(1)左式的下界估计:文[2]给出了不等式(1)的指数推广:  相似文献   

8.
题目:设x+y+z=xyz,(x>0,y>0,z>0)求证:2(x2+y2+z2)-3(xy+yz+xz)+9≥0文[1]中用三角函数知识来证明,且证明繁琐,文[2]用换元的方法,然后利用第25届IMO试题的结论:若x≥0,y≥0,z≥0,且x+y+z=1,则xy+yz+xz-2xyz≤727来证明也是不简单,实际上利用拙文[3]中提出的证明不等式化齐次的策略可简单地给出证明.证明:因x+y+z=xyz,原不等式等价于2(x2+y2+z2)(x+y+z)-3(x+y+z)(xy+yz+xz)+9xyz≥02(x3+y3+z3)+2x(y2+z2)+2y(x2+z2)+2z(x2+y2)-3x(y2+z2)-3y(x2+z2)-3z(x2+y2)-9xyz+9xyz≥02(x3+y3+z3)-x(y2+z2)-y(x2+z2)-z(x2+y2)≥0(x+y)(x-y)2+(y+z)(y-z…  相似文献   

9.
二元一次方程组与不等式(组)结合的题目,是现在七年级学生学习的难点.也是近几年来中考中常出现的题目,很多学生不知从何入手,解决这类题目的关键是如何根据已知条件运用转化的思想,构造新的不等式(组)或方程组再求解.针对这种情况现举例如下.一、由方程组构造不等式求解例1m为何值时,方程组2x+my=4x+4y=8的解是(1)正数;(2)正整数.分析:先求出方程组的解,再确定m的取值范围.解:(1)解方程组2x+my=4x+4y=8得x=8m-16m-8,y=-12m-8.因为x、y均为正数,所以x>0,y>0.由y>0即-12m-8>0,得m-8<0,m<8.由x>0即8m-16m-8>0,得8m-16<0(因为m-8<0)综上所述m<2…  相似文献   

10.
条件最值问题是中学数学中的一个难点,同学们常因概念不清、理解不透、经验不足出现差错.题已知r>0,y>0,x+2y=1,求的最小值.解因为 x>0,y>0,x+2y=1,所以所以又因为 x>0,y>0,所以由①、②得  相似文献   

11.
重视变式训练 激活思维能力--一类不等式问题的统一解法   总被引:1,自引:0,他引:1  
1 问题的出现已知x、y∈(0 ,+∞) ,且x+2 y=1,求1x +1y的最小值.学生甲:∵x >0 ,y>0x +1x ≥2 ,2 y+1y ≥2 2 ,∴x+2 y+1x +1y ≥2 +2 2 .∵x +2 y=1,∴1x +1y ≥1+2 2故1x +1y 的最小值为1+2 2 .学生乙:∵x >0 ,y>01=x+2 y≥2 x·2 y,∴xy≤18.因此 1x +1y ≥2 1xy ≥2 8=4 2 .故1x +1y 的最小值为4 2 .以上是学生解这道题目时的两种典型错解,错误的根源在于多次使用了均值不等式,而等号不能同时取到.2 问题的解决本题的条件是正数x、y的一次齐次式等于常数,即x+2 y=1,要求最小值的式子的分母是关于x和y的一次多项式,如果能把1x +1y 化…  相似文献   

12.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

13.
一个新发现的三角不等式   总被引:2,自引:2,他引:0  
苏张延卫、陕西苟春鹏两位老师分别证明 3以下三角不等式 :在△ ABC中 ,有sin A 2 sin B2 3sin C3≤ 3,(1)cos A 2 cos B2 3cos C3≤ 3 3 . (2 )受文 [1]的启发 ,本文作者证得一个类似的新结果 :cot A 2 cot B2 3cot C3≥ 6 3. (3)其实 ,我们有下述定理 在△ABC中 ,对 k≥ 1有cot Ak 2 cot B2 k 3cot C3k≥ 6 cotπ6 k,(4 )等号成立当且仅当 A=π6 ,B=π3.证明 若 x>0 ,y>,且 x y<π,则cotx coty=sin(x y)sinxsiny=2 sin(x y)cos(x- y) - cos(x y)≥ 2 sin(x y)1- cos(x y) =2 cotx y2 .∴cot AR 2 cot B2 …  相似文献   

14.
一、要注意不等式成立的条件例1已知x,y缀R+,且1x+4y=1,求x+y的最小值.错解∵x,y∈R+,∴0<1x·4y≤眼12穴1x+4y雪演2=14,即xy≥16.∴x+y≥2xy姨≥216姨=8,∴x+y的最小值是8.分析上面解法中,连续进行了两次不等式变形:x+y≥2xy姨与2xy姨≥216姨,且这两个不等式中的等号不能同时成立.因为第一个不等式当且仅当x=y时等号成立,第二个不等式当且仅当1x=4y时等号成立,即只有x=2且y=8时等号成立.因此,x+y不可能等于8.正解∵1x+4y=1,∴x+y=(x+y)·穴1x+4y雪=yx+4xy+5≥2×yx·4xy姨+5=9.上式当且仅当yx=4xy,即y=2x时等号成立.将1x+4y=1与y=2x联立,…  相似文献   

15.
这些习题译自苏联《中学数学》杂志,原来是给9到10年级的师生选用的。我们选编其中一部分,供读者参考。①解不等式:(x~(4/x)-1)/(x~(2/x)-2)>0 (x>0)。解:令x~(1/x)=y,(y>0),则原不等式可写成: ((y-1)(y+1)(y~2+1))/(y-2~(1/2)(y+2~(1/2)>0。  相似文献   

16.
伯努利不等式,在高考数学和竞赛数学中具有广泛的应用,但直接运用伯努利不等式显得有些不太方便,需要将伯努利不等式(1+x)n≥1+nx(其中x>-1,n∈N*,当且仅当x=0时,取等.)变成x n≥nx-(n-1)(其中x>0,n∈N*,当且仅当x=1时取等.)的形式.为了使不等式“x n≥nx-(n-1)”的应用范围更广,考虑通过引入参数的方式将其推广.接下来,将给出该不等式的推广和应用.  相似文献   

17.
本文就函数f(x)=x+k/x(k>0)的图像,性质及其变形和应用进行归纳总结并展开讨论.结论1函数f(x)=x+k/x(k>0)的图象及性质:(1)图象如右图所示:(2)性质:①是奇函数;②在区间(k,+∞)和(?∞,?k)上单调递增,在区间(?k,0),和(0,k)上单调递减;③在x>0时,有最小值2k,在x<0时,有最大值?2k;④存在两条渐近线为直线y=x和x=0.应用1试讨论y=b/a+a/b(ab≠0)的取值情况.解当ab>0时,y≥2;当ab<0时,y≤?2,评述构造函数y=x+1/x,充分利用性质③进行解题.应用2求函数y=x+4/(x?3)(x>3)的最小值.解y=x?3+4/(x?3)+3≥7,当且仅当x=5时等号成立.所以y的最小值为7.评述令…  相似文献   

18.
贝努利不等式 :设 x>- 1 ,且 x≠ 0 ,n是不小于 2的整数 ,则 ( 1 x) n>1 nx.这个不等式的证明方法之一是用数学归纳法 .读者可参考现行课本代数下册 ,也可用均值不等式证明 :对 n∈ N,n≥ 2 ,当 - 1 0 ,1 nx≤ 0 ,因而 ( 1 x ) n>0≥ 1 nx,故不等式成立 ;当 x>- 1n且 x≠ 0时 ,n 1 nx =n ( 1 nx)· 1· 1… 1(n- 1 )个<( 1 nx) 1 1 … 1n =1 x,∴ ( 1 x) n>1 nx.此处不等式严格成立在于 x≠ 0综上 ,只要 x>- 1且 x≠ 0 ,均有 ( 1 x) n>1 nx( n≥ 2 ) .下面给出定理的应用例 1 已知 …  相似文献   

19.
例1 当x>0时,证明下列不等式: (1)x5-4/3x3+x>0;(2)x5+4≥5x. 证明(1)设f(x)=x5-4/3x3+x,则f'(x)=5x4-4x2+1 =5(x2-2/5)2+1/5>0,所以f(x)在(0,+∞)上是增函数,于是当x>0时,f(x)>f(0)=0,  相似文献   

20.
恒成立不等式问题中字母范围的探求虽然是中学数学中的常见题型,但是学生在教材中或课堂上得不到解决问题的实质理论依据,因此在解答这类问题时,不得要领,甚至毫无头绪.本文将通过具体实例的研究,归纳解决这类问题的常见方法.分离参数即将恒成立不等式中某一变量与其他变量分离开来.例1.设不等式!x+!y≤a!x+y对一切x>0,y>0恒成立,求实数a的最小值.解:由已知,不等式a≥!x+!y!x+y对一切x>0,y>0恒成立,又因为!x+!y!x+y的最大值为!2,所以a≥!2,则a的最小值为!2.构造函数将问题转化为函数在给定区间上大于(或小于)0的恒成立问题,灵活运用函数的思…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号