首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
线性规划的基本思想是在一定的约束条件下,通过数形结合求函数的最值.解决问题时主要是借助平面图形,运用这一思想能够比较有效地解决一些二元函数的最值问题.以下笔者从规划思想出发,应用目标函数的几何特点,解决一些二元线性约束下条件下的二元函数的最值问题.一、目标函数是直线的截距问题设目标函数z=ax+by(a>0,b≠0),则直线y=-a/bx+z/b的截距z/b与z相关,若b>0,z最大,则z/b最大,其几何意义就是y轴上的截距最大,b<0,z最大,则z/b最  相似文献   

2.
当所给函数具有某种几何意义时,求函数的最值采用建立解析几何基本模型的方法比较灵活巧妙.可把函数的最值转化为求两点间的距离,两点连线的斜率,点到直线的距离,直线的截距,二次曲线等最值问题,给解题带来方便.  相似文献   

3.
构造图形能使抽象的数学问题直观、形象,从而得到简捷的解法.构造图形求最值,常见的构图有构造两点或点到直线的距离、三点共线、直线的斜率和截距等.  相似文献   

4.
在中学数学解题中,求最值的方法颇多,牵涉到的知识点有:三角形两边之和大于第三边、两点之间线段最短、勾股定理、均值定理、一元二次方程判别式、根与系数关系、函数单调性、抛物线最值理论、直线斜率、直线截距、线性规划、参数及参数方程、弦长公式等。根据圆锥曲线的定义、性质,结合上述知识点,可以解决有关圆锥曲线的最值问题。  相似文献   

5.
正线性规划的基本思想是在一定的约束条件下,通过数形结合求函数的最值.解决问题时主要是借助平面图形,运用这一思想能够比较有效地解决一些二元函数的最值问题.以下笔者从规划思想出发,应用目标函数的几何特点,解决一些二元线性约束条件下的二元函数的最值问题.一、目标函数是直线的截距问题  相似文献   

6.
直线的截距     
直线的截距是解几的基础,截距可正可负也可零;与截距相关的直线方程,常见的有三种形式;直线的截距主要用于解与三角形的面积相关的习题;直线的截距式在大考中的难度不大,却容易出错.直线的截距,是指直角坐标系中直线与坐标轴的交点的横坐标(或纵坐标).由于其本质是坐标,所以截距可以取到一切实数,通俗点地讲,就是教师们常说的"截距可正可负也可零".  相似文献   

7.
线性规划研究的是目标函数在约束条件下取最大值或最小值问题.教科书讨论了两个变量的线性规划问题.学生在求一元函数最值的基础上求二元函数的最值,由于两个自变量的变化,学生对其值域变化的意义理解不透彻,因而学习线性规划时问题多,正确率低.线性规划教学中要抓住什么?我认为线性规划这类问题可以借助直线的截距及其几何意义来解决.  相似文献   

8.
圆锥曲线的最值问题,是一类联想丰富,难度较大的问题.本文从构造直线的截距,斜率、点到直线的距离,两点间的距离及利用三点共线、圆锥曲线的第二定义等六个方面进行了分类阐述,解决问题的思想方法. 与圆锥曲线有关的最值问题涉猎知识面宽,灵活程度大,加之数形结合,函数与议程等重要数学思想体现充分,长期以来一直是学生较怕,却又十分重要的内容,本文拟把几种常见类型作以归纳总结,以期抛砖引玉。  相似文献   

9.
解析几何中,关于直线的点斜式、斜截式、截距式以及直线系方程中对斜率、截距、及直线系方程中参数人均作了规定:一直线与x轴的正方向的夹角的正切值,叫做该直线的斜率,垂直于x轴的直线的斜率不存在;一直线与x轴交点为(a,0),与y轴的交点为(0,b)时,称a与b为直线在x轴和y轴上的截距;直线系方程中参数入取任何实数.笔者认为用直线(系)方程解题时应注意完整性:用点斜式与斜截式方程解题时,既要考虑斜率存在的情况,也要考虑斜率不存在的情况;用截距式方程解题不应忽略截距为零的情况;用直线系方程A1x+B1…  相似文献   

10.
“简单线性规划”是高中数学新增内容,在高考中占有较重要的地位,考察线性规划的直接应用或间接应用,从近几年高考命题的情况分析,在高考复习中,有必要在教材内容的基础上,作出适当引申.其一是约束条件不限于一次不等式,可以是二元二次不等式或其它形式;其二是利用目标函数的几何意义解题,而且目标函数可以是非线性的.1联系直线在y轴或x轴上的截距解题例1已知实数x,y满足2│x-1│-y=0,求z=x+2y的最小值.解它的可行域的边界为一折线y=2│x-1│,目标函数z=x+2y的值就是直线x=-2y+z在x轴上的截距的值;令x+2y=0,它表示的直线为l,平移直线l到l′使l′过点M(1,0),此时,目标函数z取得最小值,zmin=1.例2已知实数x,y满足x2+y2=2x-2y+1≤0,求z=x-y-1的最大值和最小值.解它的可行域的边界是一个圆(x+1)2+(y-1)2≤1,(是非线性的可行域)目标函数z的值就是当直线y=x-z-1与可行域有公共点时,在y轴上截距的相反数再减1,因而截距最小时,z最大;截距最大时,z最小.图1令x-y=0,表示直线l:y=x.平移直线l到l′和l″,使l′和l″与圆(x+1)2+(y...  相似文献   

11.
<正>所谓定值问题其实就是证明一个量或一个表达式的值与其中的变化因素无关,这些变化的因素可能是直线的斜率、截距,也可能是动点的坐标等,这类问题的一般解法是使用变化的量表示求证目标,通过运算得知求证目标的取值与变化的量无关。当使用直线的斜率、截距表示直线方程时,在解题过程中要注意建立斜率和截距间的关系,把双参数问题化为单参数问题解决。  相似文献   

12.
正线性规划进入高中教材已经有10多年的历史.其中在线性约束条件下,求形如"z=ax+by(a,b∈R)"的目标函数的最值问题,是线性规划问题中的基本题型.解这类问题,其常规解法是利用线性约束条件作出可行域,然后利用"截距法"求出目标函数的最优解.这种方法尽管通用,但操作起来比较麻烦,既要画直线,又要作可行域,平移直线,观察  相似文献   

13.
<正>直线方程的截距式是直线方程的形式之一,用它解决涉及直线截距方面的问题时,有着独到的解题功效。但是截距式也有其陷阱与隐患,应用时还要辨伪存真。对可能存在的各种隐患须有清醒的认识。在此,对"直线方程在两坐标轴上的截距的绝对值相等"的题设条件,在解决有关直线问题时可能出现的情况进行分析。1.重视题设条件中所包含的分类情况的讨论。例1求过点P(-1,2),且在两坐标轴上的截距的绝对值相等的直线方程。  相似文献   

14.
在直线方程中,截距的定义为:如果直线和x轴的交点为(a,0),则a叫做直线在x轴上的截距,简称横截距.如果直线和y轴的交点为(0,b),则b叫做直线在y轴上的截距,简称纵截距.当直线经过原点时,即a=b=0时,横截距和纵截距相等,都是0.某数学书中有这样一道题:求过点P(3,-2),并且在两轴上的截距相等的直线方程.原书解法为:设直线在两轴上的截距为a,则所求直线方程为由点P(3,-2)在直线上,得=1,解得a=1.所得直线方程为x y=1.这里少了一个解.上面已谈到,直线经过原点时,a=b=0,就不适用于截距式方程,但这一点极易…  相似文献   

15.
李维奇 《考试》2011,(5):49-51
求最值是数学中一个重要专题,而解析几何中的一些概念和公式也被广泛运用于此,方法简洁实用。如:斜率、截距、点与点的距离公式、点到直线的距离公式,以及直线与直线的位置关系、直线与圆的位置关系等。  相似文献   

16.
直线方程的四种形式(点斜式、斜截式、两点式、截距式)均有各自的适用范围:点斜式、斜截式适用于斜率存在的情形,而截距式要求直线纵、横截距均存在且不为零,两点式适用于直线的斜率存在且不为零,当已知直线过两已知点时,其方程简单易求,不会存在什么问题,而在使用直线方程的点斜式,斜截式、截距式等形式时常易犯以下两类错误:一类是利用点斜式、斜截式求直线方程时,忽视斜率不存在的情形;一类是应用直线的截距式时,忽视直线过坐标原点。  相似文献   

17.
一、数学二册(上)习题7·2求过点P(2,3),并且在两轴上的截距相等的直线的方程.错解:因为所求直线在两轴上的截距相等,所以可设所求轴方程是ax+ay=1,即x+y=a,又因为所求直线过点P(2,3),所以2+3=a,即a=5,所以,所求直线的方程是x+y=5.剖析:上述解法中,设所求直线的截距式,其中字母a在分母上,隐含条件就是a≠0,而此题的含义中并未规定截距不能为0,所以,上述解法中漏掉了截距a=0的情况.正解:(1)当直线在两轴上的截距a=0时,直线过原点,所以直线的方程是0y--33=0x--22,即3x-2y=0.(2)当直线在两轴上的截距a≠0时,因为所求直线在两轴上的截距相等,所…  相似文献   

18.
考点聚焦1.倾斜角、直线斜率及其相互关系,倾斜角的取值范围是0°≤α<180°.2.直线方程的五种形式:①点斜式;②斜截式;③两点式;④截距式;⑤一般式.其中斜截式是点斜式的特殊情形,截距式是两点式的特殊情形.与x轴垂直的直线(斜率不存在)无点斜式、斜截式、两点式、截距式,与y轴垂直的直线(k=0)无两点式、截距式,过原点的直线无截距式.3.对于直线l1:A1x B1y C1=0和l2:A2x B2y C2=0,判断其位置关系时,可从两直线平行的必要条件A1B2-A2B1=0入手,再通过求出的系数判断两直线是平行还是重合.4.掌握两条直线的到角和夹角的求法,特殊情形(k1或…  相似文献   

19.
1.由于对截距理解失误导致直线方程漏解 截距的取值是任意实数,可正可负也可以是零,但由于我们平时总认为距离值恒为正值,这就势必影响到有些同学认为带"距"的值都为正值,一旦这种认识形成,在求直线方程时就会带来失误。 例1过点p(-5,-4)且与两坐标轴围成的三角形面积为5的直线方程.  相似文献   

20.
例扭直线l过点邢,l),且分别交x轴,y轴的正半轴于点A,B,O为坐标原点,求当△AOB的面积最小时的直线l的方程。思路一因为直线之已过一定点户飞2,l),所以可以先设出直线止的点斜式方程,且易知直线止的斜率k眨0。解设过P的直线l的方程为y一1球(x一2),则该直故所求直线‘的方程为y--卜一令(x一2),‘线在x轴,y轴上的截距分别为翔二2k一1__:。L ~一几,一一理护1一‘几蕊D即x Zy--4=0思路二由于本题中的△AOB的两直角边长就是直线l的横纵截距,且横纵截距均大于零,因此联想到直线方程的截距式。解设设过p的直线l的方程为三十答=1…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号