首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文拟在给出与圆锥曲线平行弦切线有关的一个性质.定理:AB,CD 是圆锥曲线δ的一对平行弦,曲线δ在 A,B 两点处的切线交直线 CD 于M,N,则 MC=ND.证:(1)若曲线δ表示有心圆锥曲线,不妨设其为椭圆,方程为 x~2/a~2 y~2/b~2=1(a>b>0),当直线 AB 的倾  相似文献   

2.
本文绘出有心圆锥曲线(椭圆、圆、双曲线)的“斜率”定义,研究有心圆锥曲线的“点斜式”方程及其在解题中的应用.为此,先证明定理有心圆锥曲线任一弦的斜率和弦中点与椭圆中心连线的斜率(均存在且不为零)之积为一定值‘证明设点M是有心圆锥曲线=1的弦AB的中点,kOM,kAB存在且不为零.记则两式相减得。即注意到即(定值)推论有心圆锥曲线上任一点与任一直径两端点分别连线,其斜率之积为常数.事实上,设P(X0,y0)为有心圆锥曲线上任一点,A(X1,y1),B(-X1,-y1)为一直径的两端点.则由此可见,有心圆锥曲线上的点与…  相似文献   

3.
关于有心圆锥曲线有如下结论: 如图1,设椭圆或双曲线E:sx^2+ty^2=1的弦AB的中点是M,则 kAB·kOM=-s/t=e^2-1  相似文献   

4.
<正>圆锥曲线的焦点弦是圆锥曲线中的重要元素,圆锥曲线存在与焦点弦有关的众多性质,笔者通过研究得到了下列性质,与各位同仁分享.性质1设点F为有心圆锥曲线(椭圆或双曲线,下同) C的一个焦点,C的离心率为e,过点F且斜率为k的直线l与C交于P,Q两点(C为双曲线时,P,Q两点均在与点F对应的一支图象上),设焦点弦PQ的中垂线与两焦点所在直线交于点M,则2|MF|=e|PQ|.  相似文献   

5.
在中学解析几何中,大家知道有心圆锥曲线的平行弦中点的轨迹是过中心的一条直线(其实是线段或射线),这条直线称为这有心圆锥曲线的一条直径,如图1,在椭圆中,与弦CD平行的弦的中点的轨迹是过中心O的直径A'B';平行于A'B'的弦EF的中点的轨迹是过中心O的直径AB,不难证明A'B'∥EF,AB∥CD。称AB和A'B'是椭圆的一对共轭直径。  相似文献   

6.
文[1]给出了圆锥曲线焦点弦的相关如下性质:若圆锥曲线的一条准线与对称轴的交点为A,过点A作圆锥曲线的一条割线交椭圆于B、C两点,过相应焦点F作与割线的倾斜角互补的直线交圆锥曲线于M、N两点,则|FM||FN|=e~2|AB||AC|.通过研究上述性质的逆命题,可以得到与焦点弦相关的一个性质:  相似文献   

7.
求圆锥曲线弦的中点轨迹方程,在教科书和参考书中,都是用消去参数的方法来求出其轨迹方程的。这种方法计算冗长,容易搞错。用斜率公式求弦的中点轨迹方程,只要稍加计算,就能求出其轨迹方程,学生很容易掌握。用斜率公式还能解决一些有关弦的中点的其他问题。为了叙述方便,先介绍圆锥曲线弦的斜率和弦的中点坐标间的关系。如图1所示,AB是椭圆x~2/a~2 y~2/b~2=1的弦,而M是弦AB的中点。设A、B的坐标分别为(x_1,y_1),(x_2,y_2),弦AB的中点M的坐标为(x,y),  相似文献   

8.
一些文章介绍了圆锥曲线的切点正方程和割线问题。本文将切点弦和割线联系起来,于是提出下面圆锥曲线的切弦割线定理: 如图,过圆锥曲线外一定点P的割线与圆锥曲线交于A、B两点,M是AB上一点,则使PA、PM、PB成调和数列(即倒数成等差数列)的  相似文献   

9.
与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法".一、以定点为中点的弦所在直线的方程例1过椭圆x2/16+y2/4=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程.  相似文献   

10.
有对称中心的圆锥曲线统称有心圆锥曲线,它们统一的标准方程为x~2/m+y~2/n=1,显然圆、椭圆、双曲线都是有心曲线,过有心圆锥曲线中心的弦叫有心圆锥曲线的直径,文[1]作者对课本例题加以探索、挖掘,得到了  相似文献   

11.
过圆锥曲线对称轴上一定点作直线与圆锥曲线交于A,B两点,则称线段AB为此圆锥曲线的“轴定点弦”.关于圆锥曲线的“轴定点弦”的垂直平分线(简称“中垂线”),笔者发现它有如下一个性质.  相似文献   

12.
直线l过点M(x0,y0),倾斜角为α,则其参数方程是x=x0 tcosα,y=y0 tsinα,其中参数t表示该直线上任意一点N对应的有向线段MN的数量,没该直线与圆锥曲线交于A、B两点,当定点M(x0,y0)是弦AB的中点时,有t1 t2=0;当某点P是弦AB的中点时,则点P对应的t=1/2(t1 t2),利用上述两个结果求解与弦的中点相关的问题时,相当简便.  相似文献   

13.
文[1]作者探究发现了圆锥曲线中一个“完美交点”:
  如图1,椭圆C:x2a2+y2b2=1(a > b >0)的右焦点为F,右准线l与x轴交于点N,AB为垂直于x轴的动弦,设直线AF与BN交于点M,则点M恒在椭圆C上。  相似文献   

14.
直线与圆锥曲线问题,一直是高中数学研究的重点所在,而作为直线与圆锥曲线中特殊的点——弦中点问题,更是为我们平常之所见.一、椭圆与双曲线的弦中点性质设AB为圆锥曲线x2/m+y2/n=1的一条不垂直于坐标轴的弦,异于原点的点P(x0,y0)为AB中点,则kAB·kOP=-n/m.证明(点差法)如图1,设A(x1,  相似文献   

15.
2008年高考福建文科卷第22题,改写如下:已知椭圆x^2/4+y^2/3=1,若AB为垂直于x轴的动弦,直线1:x=4与x轴交于点N,过焦点F(1,0)的直线AF与BN交于点M.求证:M恒在椭圆上.实际上,此题包含圆锥曲线的一个性质.  相似文献   

16.
经文[1]~[4]的不断研究,文[4]得到了圆锥曲线定点弦与定直线相关性的如下两个性质:性质1椭圆x2/a2+y2/b2=1(a&gt;b&gt;0)的过定点F(m,0)(m≠0,且m0,b&gt;0)的过定点F(m,0)(m&gt;a)的两条动弦AC、BD的两端点的连线AB、CD相交于点M,AD、BC相交于点N,则点M、N的轨迹都是定直线l:x=a2/m.性质2抛物线y2=2px(p&gt;0)的过定点F(m,0)(m&gt;0)的两条动弦AC、BD的两端点的连线AB、CD相交于点M,AD、BC相交于点N,则点M、N的轨迹都是定直线l:x=?m.本文将这两个性质推广到一般的情形,以更深刻揭示圆锥曲线的几何特征.定理过定点F(x0,y0)的两条动直线AC、BD分别与圆锥曲线相交于点A、B、C、D.设直线AB、CD相交于点M,AD、BC相交于点N,则(1)当圆锥曲线为椭圆22ax2+by2=1(a&gt;b&gt;0),且F(x0,y0)不为坐标原点时,点M、N的轨迹都是定直线l:xa02x+yb02y=1;(2)当圆锥曲线为双曲线22ax2?by2=1(a&gt;0,b&gt;0),且点F(x0,y0)不为坐标原点时,点M...  相似文献   

17.
文[1]给出了关于抛物线的弦对顶点张直角的一个充要条件: 设直线l与抛物线y2=2px相交于A、B两点,则OA⊥OB(O是坐标原点)的充要条件是直线l过定点(2p,0). 文[1]还对有心圆锥曲线的弦对对称中心张直角进行了研究并获得了一组结论.本文给出关于有心圆锥曲线的弦对顶点张直角的充要条件.  相似文献   

18.
1命题命题1若A B是椭圆22C1:ax2+by2=1的一条弦,且弦AB的中点为M(xM,y M),则椭圆22222C:(2x M x)(2y My)a b?+?=1经过A、B两点.证明设点A(x A,y A)、B(x B,y B),则由M是弦AB的中点,可知,x B=2x M?xA,y B=2y M?yA,由点B在椭圆C1上,知(2x M?x A)2/a2+(2y M?y A)2/b2=1,所以点A在椭圆C2上.同理可知点B也在椭圆C2上,故椭圆C2经过A,B两点.类似地有:命题2若AB是双曲线22C1:ax2?by2=1的一条弦,且弦AB的中点为M(xM,y M),则双曲线22222C:(2x M x)(2y My)1a b???=经过A,B两点.命题3若AB是抛物线y2=2px的一条弦,且弦AB的中点为…  相似文献   

19.
“圆锥曲线”是平面解析几何中的重点内容之一,而圆锥曲线中的“中点弦”问题又是直线与圆锥曲线关系中的重要内容,本文试图从圆锥曲线的中点弦方程、存在性及其应用展开研讨. 1 圆锥曲线的中点弦概念 定义 设:(,)0Cfxy=为二次曲线,0(,Px 0)y为平面上的点,若直线l与c交于AB,而A  相似文献   

20.
过定点M(x0,y0)作(常态)圆锥曲线Г:f(x,y)=Ax^2+Bxy+Cy^2+Dx+Ey+F=0(点M非曲线Г的中心)的弦l,若此弦被点M平分,则称弦l为中点弦.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号