首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
已知AB为平面α外一线段,平面α的斜线AC、BD与α所成角是30°、60°,AC=6,BD=2(3~(1/2)),AB=5。求证:AB∥α。证如图,AB在平面α内的射影为A_1B_1,则 AA_1=6sin30°=3 BB_1=2(3~(1/2))sin60°=3,  相似文献   

2.
吴天辅 《云南教育》2003,(11):37-37
适当改变数学问题的题设或结论,抓住本质,不断地将“未知”转化为“已知”,使众多题目相互沟通,递推提升,从而循序渐进地解决一系列问题,对提高学生的思维能力,有重要意义。例1 如图1,在△ABC中,∠ACB=90°,CD、CE、CF分别是△ABC的角平分线,中线和高。求证:∠FCD=∠DCE。证明:∵∠ACB=90°,并且AE=EB∴CE=AE=BE=12AB∠A+∠B=90°∠B=∠BCE,∠ACD=∠BCD∵CF⊥AB∴90°-∠B=90°-∠ACF∴∠B=∠BCE=∠ACF∴∠ACD-∠ACF=∠BCD-∠BCE即:∠FCD=∠DCE例2如图2在△ABC中,∠ACB=90°,AB的垂直平分线MN与AB相…  相似文献   

3.
董蔚 《时代数学学习》2005,(4):25-27,50
[知识要点]1 在 Rt△AB C 中,∠C= 90°,则 sin A=   ,cosA=   ,tanA=   ,cotA=      2 特殊角的三角函数值(如表1)    3 当0°<α<90°时,sinα随着角度的增大而     ;cosα随着角度的增大而      表1     α函数值函数30° 45° 60°sinαcosαtanα典型考题解析图1例 1 (2004 年大连市实验区)在 Rt△AB C 中,∠C=90°,a=1, c=4,则sinA等于(  )                   (A)1515   (B)14   (C)13   (D)154例2 (2002 年江苏省常州市)如图 1,在△ABC 中,∠ACB=90°,…  相似文献   

4.
一、在语文方面的应用例1乾隆帝为一位老翁写了一副对联“花甲重开,外加三七岁月;古稀双庆,内多一个春秋.”试问,这位老翁多大了?简解60×2+3×7=70×2+1=141(岁).二、在物理学方面的应用例2如图1,某种房屋的屋顶断面是ABC,AB=AC,横梁BC长为定值2l,当雨水从屋顶流下的时间最短时(假设雨水从A流下的初速度为0)屋顶的倾斜角α等于()(A)30°(B)45°(C)60°(D)75°解设∠ABC=α,则AB=lcosα,AB方向的加速度a=gsinα(g为重力加速度).设从A到B所需的时间为t,则12(g·sinα)·t2=lcosα,即t=4lg·sin2α.当α=45°时,所需的时间t最小.故…  相似文献   

5.
两块互相垂直的平面镜对光线的作用有其独特之处 .如图 1所示 ,平面镜 Oa、Ob互相垂直 ,光线 AB以入射角 α入射到镜面 Oa,经镜面 Oa、Ob两次反射后 ,沿 CD方向射出 .( 1)由反射定律知 :α′=α,β′=β,且α′ β=90°,故α α′ β β′=180°,即 CD∥ AB,且与α的大小无关 .设 OB=l,则 BC=lsinα,光线 CD与 AB之间的距离 :d=BCsin2 β=lsin2βsinα=lsin( 180°- 2α)sinα =lsin2αsinα=2 lcosα.由此可见 d由 l、α决定 .( 2 )保持入射点 B不变 ,但使入射角 α增大 ,则由上式可知 ,光线 CD与 AB之间距离 d将变小 ,但仍有C…  相似文献   

6.
平面几何中有关二次方程的问题,大多可以应用韦达定理去解。兹举例如下: 梯形ABCD中(图1),∠B作圆,交BC于E,F。设∠EAB=α,∠EAD=β,求证tgα和tgβ是方程AB·x~2-BC·x+CD=0的两个根。[分析]:在这道题中,只要证明tgα+tgβ=(BC)/(AB),tgαtgβ=(CD)/(AB)就行了。由已知条件,tgα=(BE)/(AB);联DE,∵AD为直径,90°。以AD为直径∠AED=∴tgβ=(DE)/(AE)。但(BE)/(AB)和(DE)/(AE)的分母不同,所以还要化简。联AF,因A、D、F、E四点共圆。∴∠ADE=∠AFE,∠FAB=90°-∠AFE=90°-∠ADE=β,∴tgβ=(BF)/(AB)。因此,解本题的关键在于证  相似文献   

7.
在一些不规则的四边形的计算和证明题中 ,往往需要添加适当的辅助线 ,其目的主要是把不规则的四边形转化为三角形问题 ,使已知条件能充分发挥作用 ,且能使全部隐含条件更加明了化 ,以增加已知条件 ,从而使所求问题得到更迅速、更巧妙的解决。现举例说明如下 :一、设法构造等边三角形例 1.如图所示 ,在四边形ABCD中 ,AB= AD=8,∠ A= 6 0°,∠ B=15 0°,四边形周长为 32 ,求 BC和 CD。解 :连结 DB,∵ AB=AD=8,∠ A=6 0°,∴△ ABD是等边三角形。∵∠ ABC=15 0°,∴∠ DBC=15 0°- 6 0°=90°。设 CD=x,BC=y,由题意得 :x+ y=32 -…  相似文献   

8.
在对学生进行课外辅导的过程中,有一位同学提出了以下一道题目:例1 P是二面角α-AB-β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,求二面角α-AB-β的大小?这道题目本身并不算太难,当场我就给出了如下的解答.解:如图1,过N点在平面β内作NE⊥AB交于点E,过E点在平面α内作EM⊥AB,交PM于点M,那么∠NEM就是二面角α-AB-β的平面角.设PE的长度为a,由∠BPM=∠BPN=45°有NE=ME=a,PN=PM=2a,而∠MPN=60°,于是MN=2a.在△MNE中,NE=ME=a,MN=2a,显然有∠NEM=90°,于是二面角α-AB-β的…  相似文献   

9.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

10.
一、测量问题解决测量问题 ,一方面要明确仰角、俯角、视角、坡度、坡角等名词术语 ;另一方面要分清谁是测量者与被测量者。例 1 .如图 ,在测量塔高 AB时 ,选择与塔底在同一水平面的同一直线上的 C、D两处 ,用测角仪器测得塔顶 A的仰角分别是 30°和 60°。已知测角仪器高 CE=1 .5米 ,CD= 30米 ,求塔高 AB(精确到 0 .1米 )。解 :在 Rt△ AGE和 Rt△ AGF中 ,∠ AEG=30°,∠ AFG= 60°,∴ EG=AGtg30°,FG=AGtg60°,这时 CD=EF=EG- FG=AGtg30°- AGtg60°,即 30 =AG (1tg30°-1tg60°) ,解之得 AG=1 5 3≈ 2 6.0。∴ AB=A…  相似文献   

11.
本刊1990年第3期刊登的《一道值得重视的立体几何习题》一文,介绍了习题: “AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_1,设∠BAC=θ,求证 cosθ_1cosθ_2=cosθ(*)~n的结论的广泛应用,读后颇受启发。但美中不足的是(*)式没有涉及二面角,如图1,若在α内过B′作B′D⊥AC,D为垂足,则  相似文献   

12.
如何求 tan 15°?学生时常为这个问题所困扰,笔者经研究发现:利用特殊角(30°,45°和60°)之间的关系巧妙地构造几何图形,不难找到一些简捷、精当的方法,下面以含30°的直角三角形为基本图形,商榷几种求 tan 15°值的方法.基本图形:如图1,在Rt△ABC 中,∠C=90°,∠ABC=30°,AC=1.基本结论:AC:BC:AB=1:3~(1/2):2,即 AB=2,BC=3~(1/2),∠A=60°.1 以30°角为顶角,构造等腰三角形方法1:如图2,延长 BC 至 D 点,使 BD=AB,连结 AD.由作法可知,BD=AB=2,∠CAD=15°.所以CD=BD-BC=2-3~(1/2).  相似文献   

13.
构建直角三角形模型解决数学问题,是一种重要的数学思想方法.需要有敏锐的观察、丰富的联想、灵活的构思及创造性的思维能力.在教学活动中,教师应注意引导学生根据题目的的特征,类比相关知识,通过构建直角三角形模型来探寻解题途径,以达到解决问题的目的.本文通过实例从几个不同侧面探讨构建直角三角形模型来解题.1利用已知直角构建直角三角形例1如图1,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,AD=5,求DBCC的值.(上海市南汇区初中数学选拔试题)解析图中含有90°,60°的角,若延长AD、BC相交于E,则可以构造出Rt△ABE,Rt△CDE.…  相似文献   

14.
一、应用特殊角的三角函数例 1 在△ABC中 ,∠A=1 2 0°,AB=3,AC=2 ,求 BC和 sin B。解 :过 C作 CD⊥ BA,交 BA的延长线于点 D,如图 1。∵∠ BAC=1 2 0°,∠ D=90°,∴∠ DAC=60°,∠ ACD=30°。在 Rt△ ACD中 ,AD=12 AC=1 ,CD=AC· sin∠DAC=2×sin60°=3。在 Rt△ BCD中 ,BD=BA AD=4,BC=BD2 CD2 =42 (3 ) 2 =1 9,∴ sin B=CDBC=31 9=571 9。例 2 已知 :△ ABC的边 AC=2 ,∠ A=45°,cos A、cos B是方程 4x2 - 2 (1 2 ) x m=0的二根 ,求 :(1 )∠ B的度数 ;(2 )边 AB的长。解 :(1 )∵∠ A=45°,∴ cos …  相似文献   

15.
一、定理:已知二面角的平面角为φ,在二面角的棱上任取一点A分别在两个半平面内作射线,两射线所成的角为θ,两射线与棱为公共边所成的角分别为θ_1和θ_2,则有: cosθ=cosθ_1 cosθ_2+sinθ_1 sinθ_2 coφ 当印φ=90°时,公式为cosθ=cosθ_1 cosθ_2 证明:(设φ,θ_1,θ_2均为锐角) 如图,∠BAC=θ,∠BAQ=θ_1,∠CAQ=θ_2,在PQ上任取一点D,在平面α和β内分别作BD⊥PQ交AB于B,作DC⊥PQ,交AC于C,连BC,则∠BDC=φ,并设AD=a,  相似文献   

16.
    
A组一、选择题1. (北京市 )如图 ,CA为⊙ O的切线 ,切点为 A,点B在⊙ O上 ,如果∠ CAB =5 5°,那么∠ AOB等于(   )(A) 5 5°.  (B) 90°.  (C) 110°.  (D) 12 0°.(第 1题 ) (第 2题 )2 . (北京海淀区 )如图 ,四边形 ABCD内接于⊙ O,E在 BC延长线上 ,若∠ A =5 0°,则∠ DCE等于 (   )(A) 4 0°.  (B) 5 0°.  (C) 70°.  (D) 130°.3. (安徽省 )如图 ACB的半径为 5 ,弦 AB =8,则弓形的高 CD为 (   )(A) 2 .  (B) 52 .  (C) 3.  (D) 163.(第 3题 ) (第 4题 )4 . (江西省 )如图 ,AB是 AB所对的弦 ,AB的…  相似文献   

17.
在总结概括推导坐标方位角推算公式的基础上,进一步分析了公式α_前=α_后+β±180°中“±180°”的加减号对, α_前的影响结果,从而正确简便地运用公式进行坐标方位角的推算。  相似文献   

18.
应用面积射影公式求二面角的大小 ,对于 (一 )平面角虽可作出 ,但比较困难 ,计算繁琐 ;(二 )平面角无法作出 ,或很难下手 .如 :1.直三棱柱ABC-A1 B1 C1 中 ,∠BAC=90° ,AB =BB1 =1,直线B1 C与平面ABC成30°角 ,求二面角B -B1 C -A的余弦值 .解 :易知∠BCB1 =30° ,作AD⊥BC于D ,则AD ⊥面BCB1 ,△AB1 C在面BCB1 上射影是△DCB1 .设二面角为θ ,cosθ =S△DCB1S△AB1C,其中AC =2 ,AB1 =2 ,S△AB1C =1,B1 C =2 ,CD =2 33,S△DCB1=12 B1 C·CD·sin30°=33,即二面角的余弦值为 33.1题图 2题图2 .正方体中 ,求二…  相似文献   

19.
设K的妙用     
在解有“比”的习题时 ,设 K可以使含“比”的项用 K的代数式表示 ,有利于思路的展开 ,达到顺利解题的目的。例 1 .在△ ABC中 ,已知∠ A∶∠ B∶∠ C=1∶ 2∶ 3,求 a∶ b∶ c。略解 :设∠ A=K,则∠ B=2 K,∠C=3K,由∠ A ∠B ∠ C=1 80°,得∠ A=30°、∠ B=60°、∠C=90°。设 a=K′,则 c=2 K′。∴b=3 K′,∴ a∶ b∶ c=K′∶ 3K′∶ 2 K′=1∶ 3∶ 2。  例 2 .如图 ,在△ ABC中 ,∠ ACB =90°,CD⊥ AB,若 AC=6,sin B=35。求 CD。略解 :由∠ACB=90°,CD⊥AB易得∠ B=∠ ACD。∵ sin B=35,∴ sin∠ ACD=ADAC=35…  相似文献   

20.
现行高中立几课本总复习参考题第3题为: 如图,AB和平面α所成的角是θ_1,AC在平面α内,AC和AB的射影AB′成角θ_2,设∠BAC=θ,求证:cosθ_1·cosθ_2=cosθ。如果把θ_1、θ_2、θ看作是以A为顶点的三个面角,该命题也可叙述为:在三面角中,如果两个面角所在平面互相垂直,那么这两个角的余弦之积等于第三个面角的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号