首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、利用根的代换求作一元二次方程例1已知方程x~2-3x+2=0,不解方程,求作一个一元二次方程,使它的根分别是已知方程的各根的倒数.  相似文献   

2.
解答某些与一元二次方程有关的问题时,要注意把根代人方程中.例1如果x=1是已知方程x~2+kx+k-5=0的一个根,那么,k的值等于().解由x=1是已知方程的根,那么1+k+k-5=0,∴k=2.例2若a是一元二次方程x~2-3x+m=0的一个根,-a是一元二次方程x~2+3x-m=0的一个根,那么a的值等于().A.1或2 B.0或-3 C.-1或-2 D.0或3  相似文献   

3.
数学的定义是建立数学大厦的基石,求与一元二次方程的根有关的代数式之值的问题时,若能恰当地用根的定义来解,则简捷明快,事半功倍.一、求代数式的值例1若m、n是关于x的方程x~2+(p一2)x+1=0的两个根,求代数式(m~2+mp+1)(n+np+1)的值.析解若展开变形求解,则相当繁冗.但依题意易想到方程根的定义,有m~2+(p-2)m+1=0,n~2+(p-2)n+1=0.再观察待求式,又可想到将此二式继而变形为m~2+mp+1=2m,  相似文献   

4.
利用一元二次方程的求根公式,可以证明:方程x~2+bx+ac=0的两根分别是方程ax~2+bx+c=0两根的a倍(a≠0)。运用这个结论,可以很快解决求作一个一元二次方程且使它的根分别是已知方程的各根的几倍问题。例1求作一个一元二次方程,使它的两根分别是方程3x~2-16x+5=0的两根的3倍。解:因为方程x~2+bx+ac=0的两根分别是方程ax~2+bx+c=0的两根的a倍,所以,所求作的一元二次方程是x~2-16x+3×5=0,即x~2-16x+15=0.如果已知方程的二次项系数刚好等于所求方程的的根是已知方程各根的倍数,那么,就用已知方程二次项系数移乘常数项,二次项系数改为1,一次项不  相似文献   

5.
在学习“一元二次方程”中,老师出了这样一道讨论题:已知关于x的一元二次方程:①x~2-2mx+m~2-m=0;②x~2-(4m+1)x+4m~2+m=0;③(m~2+1)x~2-(2m+1)x+1=0中至少有一个方程有实数根。试求m的取值范围。  相似文献   

6.
一元二次方程ax~2+bx+c=0(a≠0)是初中代数的一个重要内容之一,也是中考、各类竞赛考查的重要内容之一.同学们应全方位、多角度地诠释本节内容,下面就谈谈学习这部分内容应注意的几个问题,供参考.一、在解一元二次方程时,要善于选择合理、简捷的方法,不要轻易使用公式法例1选用适当的方法解下列方程:(1)2x~2-6=0;(2)(x-1)(x+2)=2(x+2);(3)x~2-5x-6=0;(4)x~2+x-1=0.分析方程2x~2-6=0缺少一次项,可采用直接开平方法求解;对于方程(x-1)(x+2)=2(x+2),可把  相似文献   

7.
初中《代数》第三册P.115例5是:已知方程x~2-2x-1=0,利用根与系数关系求一个一元二次方程,使它的根是原方程的各根的立方。其实,本题若不利用根与系数的关系,也可获解,请看: 解:设y为新方程任一根,则对原方程相应的根x有:y=x~3。由原方程得:X~2=2x+1,所以x~3=2x~2+x=2(2x-1)+x=5x+2。因此,y=5x+2,即x=(y-2)/5,将它代入原方程并化简即得所求方程:y~2-14y-1=0。  相似文献   

8.
一、代换代换是一种常用的解题方法,灵活代换,可以避开繁琐的运算,使复杂的问题得到简捷巧妙的解答.例1 已知 x~2+x-1=0,求代数式1997x~3+3994x~2的值.解由 x~2+x-1=0,得 x~2=1-xx~3=x·x~2=x(1-x)=x-x~2=x-(1-x)=2x-1  相似文献   

9.
已知一元二次方程有整数根 ,求方程中参数的值 ,这类问题类型较多 ,解法不一 .本文介绍几种常见方法供参考 .1 求根法当一元二次方程的判别式Δ是完全平方式或完全平方数时 ,可利用因式分解法 ,先求出方程两根 ,再求参数 .例 1 已知关于 x的一元二次方程 a2 x2 - (3a2- 8a) x +2 a2 - 1 3a +1 5 =0有整数根 ,求整数 a的值 .分析 因为Δ =(3a2 - 8a2 ) - 4 a2 (2 a2 - 1 3a+1 5) =(a2 +2 a) 2是完全平方式 ,故可用因式分解法求出方程根 .解 解方程得 x1 =2 - 3a,x2 =1 - 5a.因为方程有整数根 ,所以 x1 或 x2 是整数 .因此 ,a是 3或 5的因…  相似文献   

10.
一节初中代数课,讲完一元二次方程的一般解法后,老师布置了两道课堂练习题。解下列一元二次方程: 1.(x+1)~2-4(x+1)+4=0; 2.(x-2)~2-4(x-2)+3=0. 老师强调要先把(x+1)、(x-2)看成是一个整体,求出这个整体,然后再求方程的根。可学生都是先将括号展开,合并同类项,将方程化为一元二次方程的标准形式,  相似文献   

11.
本文以初中数学竞赛题为例,将与一元二次方程有关的综合题进行归类分析,供参考.一、与一元二次方程相结合例1(1999年山东省初中数学竞赛题)已知方程x~2+a_1x+a_2a_3=0与x~2+a_2x+a_1a_3=0有且只有一个公共根,求证:这两个方程的另两个根(除公共根外)是方程x~2+a_3x+a_1a_2=  相似文献   

12.
在学习一元二次方程时,由于涉及的概念和需要掌握的知识较多,常常犯这样或那样的错误,现把它们列举如下,供同学们学习时参考. 一、求a、b、c值的错误 例1 把一元二次方程x(x-2)=2-x化为一般式后,a,b,c的值分别是(). A.1,4,-1B.-1,-1,-2 C.1,-1,2 D.1,-1,-2 错解:C. 错解分析:将一元二次方程化为一般式时,移项、合并过程错误或没有按照一般式模型要求写a、b、c的值. 正解:将方程x(x-2)=2-x化为一般式得x2-x-2=0或(-x2+x+2=0).其对应系数a,b,c分别为1,-1,-2.选D. 温馨小提示:一元二次方程的一般式为ax2+bx+c=0(a≠0),将一个一元二次方程整理为一般式,a,b,c的值可以有两种情况(各项全部往左移或全部往右移).  相似文献   

13.
韦达定理反映了一元二次方程中根与系数间的关系,是初中代数中一条重要定理。它不仅丰富了初中代数内容,还增加了求解某些问题的方法。若巧妙地运用此定理解决某些问题,可使过程简捷,收到事半功倍之效。现举几例。一、若 x=2-3~(1/2),求 x~4-5x~3+6x~2-5 x 的值.(1986年上海市初中数学竞赛题)若将已知直接代入待求式进行求值,计算很繁琐。但由 x=2-3~(1/2)可知 x_1=2-3~(1/2),x_2=2+3~(1/2)一定是方程 x~2-4x+(?)=0的两根,故巧妙运用  相似文献   

14.
一、利用根的代换求作一元二次方程例1 已知方程x~2—3x—2=0,不解方程,求作一个一元二次方程,使它的根分别是已知方程的各根的2倍. 解设已知方程的根为x,所要求作的方程的根为y. ∵y=2x,∴x=1/2y.  相似文献   

15.
同学们已学习过一元二次方程的两种解法:公式法和因式分解法,这里再介绍一元二次方程的另一种解法——均值换元法.先看下面的例子例1 解方程3x~2+5(2x+1)=0. 解去括号,得3x~2+10x+5=0. 二次项系数化为1,得x~2+10/3x+5/3=0. 由根与系数的关系,可设原方程的两根分别为-5/3+k、-5/3-k(k≥0),  相似文献   

16.
一元二次方程是初中数学的重要内容,也是中考的热点.下面以2013年中考题为例,说明一元二次方程中常用的数学思想. 一、整体思想 例1 (2013年黔西南卷)已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是____. 解析:∵x=1是一元二次方程x2+ax+b=0的一个根, ∴12+a+b=0,∴a+b=-1, ∴.a2+b2+2ab=(a+b)2=(-1)2=1. 温馨小提示:本题主要考查一元二次方程解的概念,把根直接代入方程,即可求得a+b的值,然后整体代入求出代数式的值.  相似文献   

17.
关于一元二次方程的根的代数式求值问题,有时只用根与系数的关系求解,计算会很繁难,甚至无法解答。而借助方程根的定义,则可迎刃而解。 一、直接应用方程的根的定义,采用整体代入法求值 例1 已知a是方程x~2-3x+1=0的根,试求代数式(a~3-3a~2-2a)/(a~2+1)的值。  相似文献   

18.
付宁千 《初中生》2003,(30):30-33
一元二次方程是初中数学的重要内容,在数学竞赛中经常出现.它是解决高次方程和其他方程的基础.有些从表面上看不是一元二次方程的问题,通过变形等手段,可以构造一元二次方程来解决.下面以竞赛题为例,介绍构造一元二次方程的4种方法.一、根据方程根的定义构造例1若a·b≠1,且有5a2+2001a+9=0及9b2+2001b+5=0,则ab的值是().(A)95(B)59(C)-20015(D)-20019(2001年全国初中数学竞赛题)解:5a2+2001a+9=0.(1)因为b=0不是方程9b2+2001b+5=0的根,故可得5·(1b)2+2001·1b+9=0.(2)由(1)、(2)和方程根的定义可知a、1b都是方程5x2+2001x+9=0的根,31200…  相似文献   

19.
一元二次方程ax~2+bx+c=0(a≠0)有实根的充要条件是判别式△=b~2-4ac≥0,这里a、b、c是与未知数x无关的常数,对于象 1.求x~2+2xsin(xy)+1=0的一切实数解. 2.求x~2-2xsin(π/2)x+1=0的所有实根. 3.证明2sinx=5x~2+2x+3无实数解. 之类问题,是不是也可以应用类似的判别式来解呢?直接应用一元二次方程的根的判别式来解是缺乏理论根据的,本文给出这类问题的一般形式  相似文献   

20.
本文拟将一代数定理的应用介绍如下,供同学们参考 [定理] 已知a_0+a_1+a_2+……+a_(n-1)+a_n=0,求证:一元n次方程a_0x~n+a_1x~(n-1)+a_2x~(n-2)+……+a_(n-1)x+a_n=0(a_0≠0)有一个根为1。证明:(略)下面谈一下这个定理的应用: [例1] 已知方程(m+1)(x~2-x)=(m-1)·(x-1)的两根绝对值相等而符号相反,求m的值。解:原方程变形为(m+1)x~2-2mx+(m-1)=0,由题设知m+1≠0,但m+1-2m+m-1=0,∴此方程有一个根为1。而原方程两根绝对值相等、符  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号