首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
目的:确定跑步疲劳进程中下肢生物力学模式的变化,包括垂直和前后地面反作用力(ground reaction force,GRF)、垂直地面反作用力(vertical ground reaction force,vGRF)负载率、关节力学和刚度。方法:14名男性受试,采用Vicon红外摄像头和Bertec三维测力跑台,每隔2 min采集受试疲劳干预中的15 s GRF数据以及标记点轨迹。受试需穿着统一的跑鞋在测力跑台以恒速3.33 m/s跑至疲劳。满足以下标准时,干预结束:1)最大心率大于当下年龄的90%;2)受试不能继续跑步。对比受试跑至疲劳进程中4个时刻(疲劳前、33%、67%和100%)的着地冲击和下肢三关节触地角度、最大角度、关节活动度、角度变化量、关节蹬伸力矩和刚度等特征,采集并分析受试安静状态、疲劳后即刻、疲劳后4 min、疲劳后9 min的血乳酸浓度。结果:与疲劳前相比,1)血乳酸浓度在疲劳后即刻、疲劳后4 min和疲劳后9 min均显著增加;2)垂直/前后矢状轴GRF和vGRF负载率等参数在疲劳干预过程中均未观察到显著性变化;3)髋关节活动度在疲劳过程的33%、67%和100%时刻显著增加,膝关节活动度在67%时刻显著增加;4)踝关节运动学及踝、膝和髋关节的蹬伸力矩峰值均无变化;5)垂直刚度在67%和100%时刻显著降低。结论:疲劳干预过程中,GRF特征参数均没有明显变化,但是观察到下肢运动学和动力学模式的非线性改变。特别是从疲劳干预中期开始,人体下肢通过增加髋、膝关节活动度并减小垂直刚度实现“软着陆”策略,维持相似的冲击力特征,以减小长时间跑步可能带来损伤的风险。  相似文献   

2.
The purpose of this study was to examine the effects of step length and foot strike pattern along with their interaction on tibiofemoral joint (TFJ) and medial compartment TFJ kinetics during running. Nineteen participants ran with a rear foot strike pattern at their preferred speed using a short (?10%), preferred, and long (+10%) step length. These step length conditions were then repeated using a forefoot strike pattern. Regardless of foot strike pattern, a 10% shorter step length resulted in decreased peak contact force, force impulse per step, force impulse per kilometre, and average loading rate at the TFJ and medial compartment, while a 10% increased step length had the opposite effects (all P < 0.05). A forefoot strike pattern significantly lowered TFJ and medial compartment TFJ average loading rates compared with a rear foot strike pattern (both <0.05) but did not change TFJ or medial compartment peak force, force impulse per step, or force impulse per km. The combination of a shorter step length and forefoot strike pattern produced the greatest reduction in peak medial compartment contact force (P < 0.05). Knowledge of these running modification effects may be relevant to the management or prevention of TFJ injury or pathology among runners.  相似文献   

3.
This study investigated the normal and parallel ground reaction forces during downhill and uphill running in habitual forefoot strike and habitual rearfoot strike (RFS) runners. Fifteen habitual forefoot strike and 15 habitual RFS recreational male runners ran at 3 m/s ± 5% during level, uphill and downhill overground running on a ramp mounted at 6° and 9°. Results showed that forefoot strike runners had no visible impact peak in all running conditions, while the impact peaks only decreased during the uphill conditions in RFS runners. Active peaks decreased during the downhill conditions in forefoot strike runners while active loading rates increased during downhill conditions in RFS runners. Compared to the level condition, parallel braking peaks were larger during downhill conditions and parallel propulsive peaks were larger during uphill conditions. Combined with previous biomechanics studies, our findings suggest that forefoot strike running may be an effective strategy to reduce impacts, especially during downhill running. These findings may have further implications towards injury management and prevention.  相似文献   

4.
ABSTRACT

Running is a common exercise with numerous health benefits. Vertical ground reaction force (vGRF) influences running injury risk and running performance. Measurement of vGRF during running is now primarily constrained to a laboratory setting. The purpose of this study was to evaluate a new approach to measuring vGRF during running. This approach can be used outside of the laboratory and involves running shoes instrumented with novel piezoresponsive sensors and a standard accelerometer. Thirty-one individuals ran at three different speeds on a force-instrumented treadmill while wearing the instrumented running shoes. vGRF was predicted using data collected from the instrumented shoes, and predicted vGRF were compared to vGRF measured via the treadmill. Per cent error of the resulting predictions varied depending upon the predicted vGRF characteristic. Per cent error was relatively low for predicted vGRF impulse (2–7%), active peak vGRF (3–7%), and ground contact time (3–6%), but relatively high for predicted vGRF load rates (22–29%). These errors should decrease with future iterations of the instrumented shoes and collection of additional data from a more diverse sample. The novel technology described herein might become a feasible way to collect large amounts of vGRF data outside of the traditional biomechanics laboratory.  相似文献   

5.
An evaluation of a six-week Combined minimal footwear transition and gait-retraining combination vs. gait retraining only on impact characteristics and leg stiffness. Twenty-four trained male runners were randomly assigned to either (1) Minimalist footwear transition Combined with gait-retraining over a six-week period (“Combined” group; n = 12) examined in both footwear, or (2) a gait-retraining group only with no minimalist footwear exposure (“Control”; n = 12). Participants were assessed for loading rate, impact peak, vertical, knee and ankle stiffness, and foot-strike using 3D and kinetic analysis. Loading rate was significantly higher in the Combined group in minimal shoes in pre-tests compared to a Control (P ≤ 0.001), reduced significantly in the Combined group over time (P ≤ 0.001), and was not different to the Control group in post-tests (P = 0.16). The impact peak (P = 0.056) and ankle stiffness reduced in both groups (P = 0.006). Loading rate and vertical stiffness was higher in minimalist footwear than conventional running shoes both pre (P ≤ 0.001) and post (P = 0.046) the intervention. There has a higher tendency to non-rearfoot strike in both interventions, but more acute changes in the minimalist footwear. A Combined intervention can potentially reduce impact variables. However, higher loading rate initially in minimalist footwear may increase the risk of injury in this condition.  相似文献   

6.
BackgoundBarefoot (BF) running has recently increased in popularity with claims that it is more natural and may result in fewer injuries due to a reduction in impact loading. However, novice BF runners do not necessarily immediately switch to a forefoot strike pattern. This may increase mechanical parameters such as loading rate, which has been associated with certain running-related injuries, specifically, tibial stress fractures, patellofemoral pain, and plantar fasciitis. The purpose of this study was to examine changes in loading parameters between typical shod running and instructed BF running with real-time force feedback.MethodsForty-nine patients seeking treatment for a lower extremity injury ran on a force-sensing treadmill in their typical shod condition and then BF at the same speed. While BF they received verbal instruction and real-time feedback of vertical ground reaction forces.ResultsWhile 92% of subjects (n = 45) demonstrated a rearfoot strike pattern when shod, only 2% (n = 1) did during the instructed BF run. Additionally, while BF 47% (n = 23) eliminated the vertical impact transient in all eight steps analyzed. All loading variables of interest were significantly reduced from the shod to instructed BF condition. These included maximum instantaneous and average vertical loading rates of the ground reaction force (p < 0.0001), stiffness during initial loading (p < 0.0001), and peak medial (p = 0.001) and lateral (p < 0.0001) ground reaction forces and impulses in the vertical (p < 0.0001), medial (p = 0.047), and lateral (p < 0.0001) directions.ConclusionAs impact loading has been associated with certain running-related injuries, instruction and feedback on the proper forefoot strike pattern may help reduce the injury risk associated with transitioning to BF running.  相似文献   

7.
The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6?min?mile?1) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.  相似文献   

8.
Runners tend to shift from a rearfoot to a forefoot strike pattern when running barefoot. However, it is unclear how the first attempts at running barefoot affect habitually rearfoot shod runners. Due to the inconsistency of their recently adopted barefoot technique, a number of new barefoot-related running injuries are emerging among novice barefoot runners. The aim of this study was therefore to analyse the influence of three running conditions (natural barefoot [BF], barefoot with a forced rearfoot strike [BRS], and shod [SH]) on muscle activity and impact accelerations in habitually rearfoot shod runners. Twenty-two participants ran at 60% of their maximal aerobic speed while foot strike, tibial and head impact accelerations, and tibialis anterior (TA), peroneus longus (PL), gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) muscle activity were registered. Only 68% of the runners adopted a non-rearfoot strike pattern during BF. Running BF led to a reduction of TA activity as well as to an increase of GL and GM activity compared to BRS and SH. Furthermore, BRS increased tibial peak acceleration, tibial magnitude and tibial acceleration rate compared to SH and BF. In conclusion, 32% of our runners showed a rearfoot strike pattern at the first attempts at running barefoot, which corresponds to a running style (BRS) that led to increased muscle activation and impact accelerations and thereby to a potentially higher risk of injury compared to running shod.  相似文献   

9.
The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23?±?5 yrs; stature 1.78?±?0.06 m; mass 72.6?±?9.2?kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (Fpeak) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (?25 to ?9.3?BW?s?1; 60% likely beneficial reduction) and plantar sensation was increased (46–58?mm) with the insole. Fpeak (?0.1 to 0.14?BW) and velocity (?0.02 to 0.06?m?s?1) were similar. Stride length, flight and contact time were lower (?0.13 to ?0.01 m; ?0.02 to?0.01?s; ?0.016 to ?0.006?s) and stride rate was higher (0.01–0.07 steps?s?1) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.  相似文献   

10.
High impact forces during gymnastic landings are thought to contribute to the high rate of injuries. Lower limb joint flexion is currently limited within gymnastic rules, yet might be an avenue for reduced force absorption. This study investigated whether lower limb flexion during three gymnastic landings was related to force. Differences between landings were also explored. Twenty-one elite women's artistic gymnasts performed three common gymnastic techniques: drop landing (DL), front and back somersaults. Ankle, knee, and hip angles, and vertical ground reaction force [(vGRF) magnitude and time to peak], were measured using three-dimensional motion analysis and force platform. The DL had significantly smaller peak vGRF, greater time to peak vGRF and larger lower limb flexion ranges than landing from either somersault. Peak vGRF and time to peak vGRF were inversely related. Peak vGRF was significantly reduced in gymnasts who landed with greater hip flexion, and time to peak was significantly increased with increasing ankle, knee, and hip flexion. Increased range of lower limb flexion should be encouraged during gymnastic landings to increase time to peak vGRF and reduce high impact force. For this purpose, judging criteria limitations on lower limb flexion should be reconsidered.  相似文献   

11.
ABSTRACT

While foot orthoses are commonly used in running, little is known regarding biomechanical risk potentials during uphill running. This study investigated the effects of arch-support orthoses on kinetic and kinematic variables when running at different inclinations. Sixteen male participants ran at different inclinations (0°, 3° and 6°) when wearing arch-support and flat orthoses on an instrumented treadmill. Arch-support orthoses induced longer contact time, larger initial ankle dorsiflexion, maximum ankle eversion, and knee sagittal range of motion (RoM) (p < 0.05). As incline slopes increased, vertical impact peak and loading rate, stride length, and ankle coronal RoM decreased, but contact time, stride frequency, initial ankle dorsiflexion and inversion, maximum dorsiflexion, initial knee flexion, and ankle sagittal RoM increased (p < 0.05). Furthermore, knee sagittal RoM was lowest when running at an inclination of 3°. The interaction effect indicated that in arch-support condition, participants running at 6° induced higher maximum ankle eversion than running at 0° (p < 0.05), while no differences were found in flat orthosis condition. These findings suggest that the use of arch-support orthoses would influence running biomechanics that is related to injury risks. Running at higher inclination led to more alterations to biomechanical variables than at lower inclination.  相似文献   

12.
BackgroundBone stress injuries (BSIs) are common in female runners, and recurrent BSI rates are high. Previous work suggests an association between higher impact loading during running and tibial BSI. However, it is unknown whether impact loading and fatigue-related loading changes discriminate women with a history of multiple BSIs. This study compared impact variables at the beginning of a treadmill run to exertion and the changes in those variables with exertion among female runners with no history of BSI as well as among those with a history of single or multiple BSIs.MethodsWe enrolled 45 female runners (aged 18–40 years) for this cross-sectional study: having no history of diagnosed lower extremity BSI (N-BSI, n = 14); a history of 1 lower extremity BSI (1-BSI, n = 16); and diagnosed by imaging, or a history of multiple (≥3) lower extremity BSIs (M-BSI, n = 15). Participants completed a 5-km race speed run on an instrumented treadmill while wearing an Inertial Measurement Unit. The vertical average loading rate (VALR), vertical instantaneous loading rate (VILR), vertical stiffness during impact via instrumented treadmill, and tibial shock determined as the peak positive tibial acceleration via Inertial Measurement Unit were measured at the beginning and the end of the run.ResultsThere were no differences between groups in VALR, VILR, vertical stiffness, or tibial shock in a fresh or exerted condition. However, compared to N-BSI, women with M-BSI had greater increase with exertion in VALR (–1.8% vs. 6.1%, p = 0.01) and VILR (1.5% vs. 4.8%, p = 0.03). Similarly, compared to N-BSI, vertical stiffness increased more with exertion among women with M-BSI (–0.9% vs. 7.3%, p = 0.006) and 1-BSI (–0.9% vs. 1.8%, p = 0.05). Finally, compared to N-BSI, the increase in tibial shock from fresh to exerted condition was greater among women with M-BSI (0.9% vs. 5.5%, p = 0.03) and 1-BSI (0.9% vs. 11.2%, p = 0.02).ConclusionWomen with 1-BSI or M-BSIs experience greater exertion-related increases in impact loading than women with N-BSI. These observations imply that exertion-related changes in gait biomechanics may contribute to risk of BSI.  相似文献   

13.
BackgroundAn extraordinary long-term running performance may benefit from low dynamic loads and a high load-bearing tolerance. An extraordinary runner (age = 55 years, height = 1.81 m, mass = 92 kg) scheduled a marathon a day for 100 consecutive days. His running biomechanics and bone density were investigated to better understand successful long-term running in the master athlete.MethodsOverground running gait analysis and bone densitometry were conducted before the marathon-a-day challenge and near its completion. The case's running biomechanics were compared pre-challenge to 31 runners who were matched by a similar foot strike pattern.ResultsThe case's peak vertical loading rate (Δx? = –61.9 body weight (BW)/s or –57%), peak vertical ground reaction force (Δx? = –0.38 BW or –15%), and peak braking force (Δx? = –0.118 BW or –31%) were remarkably lower (p < 0.05) than the control group at ~3.3 m/s. The relatively low loading-related magnitudes were attributed to a remarkably high duty factor (0.41) at the evaluated speed. The foot strike angle of the marathoner (29.5°) was greater than that of the control group, affecting the peak vertical loading rate. Muscle powers in the lower extremity were also remarkably low in the case vs. controls: peak power of knee absorption (Δx? = –9.16 watt/kg or –48%) and ankle generation (Δx? = –3.17 watt/kg or –30%). The bone mineral density increased to 1.245 g/cm² (+2.98%) near completion of the challenge, whereas the force characteristics showed no statistically significant change.ConclusionThe remarkable pattern of the high-mileage runner may be useful in developing or evaluating load-shifting strategies in distance running.  相似文献   

14.
This study assessed kinematic differences between different foot strike patterns and their relationship with peak vertical instantaneous loading rate (VILR) of the ground reaction force (GRF). Fifty-two runners ran at 3.2 m · s?1 while we recorded GRF and lower limb kinematics and determined foot strike pattern: Typical or Atypical rearfoot strike (RFS), midfoot strike (MFS) of forefoot strike (FFS). Typical RFS had longer contact times and a lower leg stiffness than Atypical RFS and MFS. Typical RFS showed a dorsiflexed ankle (7.2 ± 3.5°) and positive foot angle (20.4 ± 4.8°) at initial contact while MFS showed a plantar flexed ankle (?10.4 ± 6.3°) and more horizontal foot (1.6 ± 3.1°). Atypical RFS showed a plantar flexed ankle (?3.1 ± 4.4°) and a small foot angle (7.0 ± 5.1°) at initial contact and had the highest VILR. For the RFS (Typical and Atypical RFS), foot angle at initial contact showed the highest correlation with VILR (r = ?0.68). The observed higher VILR in Atypical RFS could be related to both ankle and foot kinematics and global running style that indicate a limited use of known kinematic impact absorbing “strategies” such as initial ankle dorsiflexion in MFS or initial ankle plantar flexion in Typical RFS.  相似文献   

15.
ABSTRACT

The majority of barefoot running studies have not considered speed as an influential factor on foot strike pattern. The aim of this study was to investigate differences in foot strike pattern and spatiotemporal characteristics between barefoot and shod overground running at varying speeds. We first determined maximal running speed (Vm) over 50 m in 15 recreationally active men who self-reported as habitual rearfoot strikers. Participants then completed shod and barefoot running trials at different speeds equivalent to approximately 90%, 80%, 70% and 60% of Vm. Sagittal plane two-dimensional (2D) foot-ground contact angle, ankle plantar-dorsi flexion angle, contact time, flight time, step length and step rate variables for each trial were recorded. A significant interaction effect of running speed and footwear condition (p < 0.05) on foot-ground contact angle, ankle plantar-dorsi flexion angle and contact time was observed. There was a main effect of running speed (p < 0.01) on flight time, step length and step rate. There was a main effect of footwear condition on step length (p < 0.01). Participants were more inclined to plantarflex the ankle and contact the ground with the forefoot at higher percentages of Vm, especially when running barefoot.  相似文献   

16.
PurposeTo observe the relative change in foot-strike pattern, pressure characteristics, surface electromyography (sEMG) recordings, and stride characteristics in forefoot strike runners wearing both minimalist and traditional shoes during a 50-km run.MethodsFour experienced minimalist runners were enrolled in this study. Each runner ran a 50-km simulated run in both minimalist shoes and traditional shoes. Pressure data, sEMG recordings, and limited 3D motion capture data were collected during the initial 0.8 km and final 0.8 km for each trial.ResultsThree runners in the traditional shoe type condition and one runner in the minimalist shoe type condition demonstrated a more posterior initial contact area (midfoot strike (MFS) pattern) after the 50-km run, which was supported by increased activity of the tibialis anterior in the pre-contact phase (as per root mean square (RMS) values). In addition, in both pre- and post-run conditions, there were increased peak pressures in the minimalist shoe type, specifically in the medial forefoot. Muscle fatigue as defined by a decreased median frequency observed in isometric, constant force contractions did not correspond with our hypothesis in relation to the observed foot strike change pattern. Finally, step rate increased and step length decreased after the 50-km run in both shoe type conditions.ConclusionMore runners adopted a more posterior initial contact area after the 50-km run in the traditional shoe type than in the minimalist shoe type. The runners who adopted a more posterior initial contact area were more closely associated with an increased median frequency of the medial gastrocnemius, which suggests there may be a change in motor unit recruitment pattern during long-distance, sustained velocity running. The increased peak pressures observed in the medial forefoot in the minimalist shoe type may predispose to metatarsal stress fractures in the setting of improper training.  相似文献   

17.
Running on a treadmill is an activity that is novel to many people. Thus, a familiarisation period may be required before reliable and valid determinations of biomechanical parameters can be made. The current study investigated the time required for treadmill familiarisation under barefoot and shod running conditions. Twenty-six healthy men, who were inexperienced in treadmill running, were randomly allocated to run barefoot or shod for 20 minutes on a treadmill at a self-selected comfortable pace. Sagittal-plane kinematics for the ankle, knee and hip, and ground reaction force and spatio-temporal data were collected at two-minute intervals. For the barefoot condition, temporal differences were observed in peak hip flexion and peak knee flexion during swing. For the shod condition, temporal differences were observed for peak vertical ground reaction force. No temporal differences were observed after 8 minutes for either condition. Reliability analysis revealed high levels of consistency (ICC > 0.90) across all consecutive time-points for all dependent variables for both conditions after 8 minutes with the exception of maximal initial vertical ground reaction force loading rate. Participants in both barefoot and shod groups were therefore considered familiarised to treadmill running after 8 minutes.  相似文献   

18.
Usage of accelerometers within player tracking devices in sport to quantify load, vertical ground reaction force (vGRF) or energy expenditure is contrary to placement guidelines. This study aimed to determine whether trunk-mounted accelerometers were a valid and reliable method to estimate thoracic segment or centre of gravity (COG) acceleration or vGRF, and the whether the elasticised harness contributes to the overestimation of acceleration. Ten male amateur rugby players performed five linear running tasks per lower limb at three speeds, twice, each with a different player tracking unit. Three-dimensional data were recorded and triaxial accelerometers were attached lateral to the device on the harness and skin and both shanks. Accelerometers demonstrated poor reliability (ICC:0.0–0.67), high variability (CV%:14–33%) and change in mean (41–160%), and were not valid to estimate vertical acceleration of the COG and thoracic segment nor vGRF. Caution is advised when utilising trunk-mounted triaxial accelerometer data as it is not a valid or reliable means to estimate peak vertical acceleration for its thoracic location nor whole-body COG acceleration or vGRF during running. To improve player tracking instrument validity and reliability, a new attachment method and/or harness material(s), that reduce or eliminate extraneous acceleration during running, are urgently required.  相似文献   

19.
Abstract

High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.  相似文献   

20.
ABSTRACT

This study aimed to explore the plantar loading variables between habitual rearfoot strike (RFS) and non-rearfoot strike (NRFS) during running. 78 healthy males participated in this study (41 RFS, 37 NRFS). In-shoe pressure sensors were used to measure plantar loading while the participants were running on a 15 m indoor runway with their preferred foot strike pattern (FSP) at 12.0 ± 5% km/h. Results indicate that force and pressure parameters were much higher in the rearfoot and midfoot regions during RFS running and relatively greater in forefoot region during NRFS running. However, compared with NRFS running, the contact area, maximum force and force-time-integrals during RFS running on total foot were 21.44% (P < 0.001, ES = 2.29), 13.99% (P = 0.006, ES = 0.64) and 21.27% (P < 0.001, ES = 0.85) higher, respectively. Total foot peak pressure and pressure-time-integral between two FSPs were similar. Higher loads in the rearfoot region may transmit to the knee joint and result in patellofemoral joint injuries. NRFS runners’ higher loads in forefoot seem to be ralated to metatarsal stress fractures and compensatory damage to the Achilles tendon. Therefore, runners should choose proper FSPs according to their unique physical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号