首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Biomechanical analysis has typically been confined to a laboratory setting. While attempts have been made to take laboratory testing into the field, this study was designed to assess whether augmented reality (AR) could be used to bring the field into the laboratory. This study aimed to measure knee load in volleyball players through a jump task incorporating AR while maintaining the perception-action couplings by replicating the visual features of a volleyball court. Twelve male volleyball athletes completed four tasks: drop landing, hop jump, spike jump, and spike jump while wearing AR smart glasses. Biomechanical variables included patellar tendon force, knee moment and kinematics of the ankle, knee, hip, pelvis and thorax. The drop landing showed differences in patellar tendon force and knee moment when compared to the other conditions. The hop jump did not present differences in kinetics when compared to the spike conditions, instead of displaying the greatest kinematic differences. As a measure of patellar tendon loading the AR condition showed a close approximation to the spike jump, with no differences present when comparing landing forces and mechanics. Thus, AR may be used in a clinical assessment to better replicate information from the competitive environment.  相似文献   

2.
The purpose of this study was to evaluate the effects of a functional agility fatigue protocol on lower extremity biomechanics between two unanticipated tasks (stop-jump and sidestep). The subjects consisted of fifteen female collegiate soccer athletes (19±0.7 years, 1.67±0.1 m, 61.7±8 kg) free of lower extremity injury. Participants performed five trials of stop-jump and sidestep tasks. A functional short-term agility protocol was performed, and immediately following participants repeated the unanticipated running tasks. Lower extremity kinematic and kinetic values were obtained pre and post fatigue. Repeated measures analyses of variance were conducted for each dependent variable with an alpha level set at 0.05. Knee position post-fatigue had increased knee internal rotation (11.4±7.5° vs. 7.9±6.5° p=0.011) than pre-fatigue, and a decreased knee flexion angle (-36.6±6.2° vs. ?40.0±6.3°, p = 0.003), as well as hip position post-fatigue had decreased hip flexion angle (35.5±8.7° vs. 43.2±9.5°, p = 0.002). A quick functional fatigue protocol altered lower extremity mechanics of Division I collegiate soccer athletes during landing tasks. Proper mechanics should be emphasized from the beginning of practice/game to aid in potentially minimizing the effects of fatigue in lower extremity mechanics.  相似文献   

3.
Dancers are exposed to the effects of repetitive jumping and leaping as are other athletes that tend to develop patellar tendinopathy. Greater vertical ground reaction forces occur during landing from a dance leap than during takeoff and during other common athletic activities. The purposes of this study were: (1) to compare the landing ground reaction force profiles of participants with and without clinically diagnosed patellar tendinopathy, and (2) to determine the strength of the relationship between landing angle, and braking impulse. Eighteen elite pre-professional dancers (12 healthy, 6 with patellar tendinopathy; both groups 50% male) performed sauts de chat for kinetic and kinematic analysis. Dancers with patellar tendinopathy demonstrated greater peak vertical ground reaction force and impulse (36% and 15% greater, respectively). Dancers with patellar tendinopathy demonstrated greater peak braking ground reaction force and impulse (82% and 126% greater, respectively). Landing angle explained 67% of the braking impulse. Dancers with patellar tendinopathy exhibited greater vertical and braking impulses than healthy dancers. Braking impulse was strongly correlated with landing angle. While there was no difference between groups in landing angle, dancers with patellar tendinopathy exhibited greater braking impulse than their non-tendinopathic counterparts, even at similar landing angles.  相似文献   

4.
This study aimed to determine if a quantifiable relationship exists between the peak sound amplitude and peak vertical ground reaction force (vGRF) and vertical loading rate during running. It also investigated whether differences in peak sound amplitude, contact time, lower limb kinematics, kinetics and foot strike technique existed when participants were verbally instructed to run quietly compared to their normal running. A total of 26 males completed running trials for two sound conditions: normal running and quiet running. Simple linear regressions revealed no significant relationships between impact sound and peak vGRF in the normal and quiet conditions and vertical loading rate in the normal condition. t-Tests revealed significant within-subject decreases in peak sound, peak vGRF and vertical loading rate during the quiet compared to the normal running condition. During the normal running condition, 15.4% of participants utilised a non-rearfoot strike technique compared to 76.9% in the quiet condition, which was corroborated by an increased ankle plantarflexion angle at initial contact. This study demonstrated that quieter impact sound is not directly associated with a lower peak vGRF or vertical loading rate. However, given the instructions to run quietly, participants effectively reduced peak impact sound, peak vGRF and vertical loading rate.  相似文献   

5.
The ankle joint’s role in shock absorption during landing has been researched in many studies, which have found that landing with higher amounts of plantarflexion (PF) results in lower peak vertical ground reaction forces and loading rates. However, there has not yet been a study that compares drop landings within participants along a quantitative continuum of PF angles. Using a custom-written real-time feedback program, participants adjusted their ankles to an instructed PF angle and dropped onto two force platforms. For increasing PF, peak ground reaction force and peak loading rate during weight acceptance decreased significantly. The hip’s contribution to peak support moment decreased as PF at initial contact increased up to 30°. The ankle and knee contributions increased over this same continuum of PF angles. There appears to be no optimal PF angle based on peak ground reaction force and loading rate measurements, but there may be an optimum where joint contributions to peak support moment converge and the hip moment’s contribution is minimised.  相似文献   

6.
The purpose of this study was to examine changes in landing performance during fatigue that could result in increased stress fracture injury risk. Five participants performed nonfatigued and fatigued drop landings (0.60 m), while ground reaction force (GRF), electromyographic (EMG) activity, and kinematics were recorded. Fatigue was defined as a 5-20% reduction in vertical jumping performance. Single-subject analyses revealed that all participants were affected (p < or = .05) by fatigue. Post hoc comparisons revealed a group effect (p < or = .05) for selected variables. Participants landed with (a) less joint flexion at contact and used a greater range of motion, (b) greater GRF peaks and loading rates, and (c) less EMG activity. These changes were consistent with greater risk of stress fracture.  相似文献   

7.
Increased lateral trunk bending to the injured side has been observed when ACL injuries occur. The purpose was to quantify the effect of mid-flight lateral trunk bending on center of mass (COM) positions and subsequent landing mechanics during a jump-landing task. Forty-one recreational athletes performed a jump-landing task with or without mid-flight lateral trunk bending. When the left and right trunk bending conditions were compared with the no trunk bending condition, participants moved the COM of the upper body to the bending direction, while the COM of the pelvis, ipsilateral leg, and contralateral leg moved away from the bending direction relative to the whole body COM. Participants demonstrated increased peak vertical ground reaction forces (VGRF) and knee valgus and internal rotation angles at peak VGRF for the ipsilateral leg, but decreased peak VGRF and knee internal rotation angles at peak VGRF and increased knee varus angles at peak VGRF for the contralateral leg. Mid-flight lateral trunk resulted in an asymmetric landing pattern associated with increased ACL loading for the ipsilateral leg. The findings may help to understand altered trunk motion during ACL injury events and the discrepancy in ACL injuries related to limb dominance in badminton and volleyball.  相似文献   

8.
9.
目的:确定跑步疲劳进程中下肢生物力学模式的变化,包括垂直和前后地面反作用力(ground reaction force,GRF)、垂直地面反作用力(vertical ground reaction force,vGRF)负载率、关节力学和刚度。方法:14名男性受试,采用Vicon红外摄像头和Bertec三维测力跑台,每隔2 min采集受试疲劳干预中的15 s GRF数据以及标记点轨迹。受试需穿着统一的跑鞋在测力跑台以恒速3.33 m/s跑至疲劳。满足以下标准时,干预结束:1)最大心率大于当下年龄的90%;2)受试不能继续跑步。对比受试跑至疲劳进程中4个时刻(疲劳前、33%、67%和100%)的着地冲击和下肢三关节触地角度、最大角度、关节活动度、角度变化量、关节蹬伸力矩和刚度等特征,采集并分析受试安静状态、疲劳后即刻、疲劳后4 min、疲劳后9 min的血乳酸浓度。结果:与疲劳前相比,1)血乳酸浓度在疲劳后即刻、疲劳后4 min和疲劳后9 min均显著增加;2)垂直/前后矢状轴GRF和vGRF负载率等参数在疲劳干预过程中均未观察到显著性变化;3)髋关节活动度在疲劳过程的33%、67%和100%时刻显著增加,膝关节活动度在67%时刻显著增加;4)踝关节运动学及踝、膝和髋关节的蹬伸力矩峰值均无变化;5)垂直刚度在67%和100%时刻显著降低。结论:疲劳干预过程中,GRF特征参数均没有明显变化,但是观察到下肢运动学和动力学模式的非线性改变。特别是从疲劳干预中期开始,人体下肢通过增加髋、膝关节活动度并减小垂直刚度实现“软着陆”策略,维持相似的冲击力特征,以减小长时间跑步可能带来损伤的风险。  相似文献   

10.
11.
Abstract

The main aim of this study was to assess neuromuscular fatigue during a typical high-load, low-repetition loading protocol. Muscle stimulations were used to assess maximum voluntary contraction, resting single- and double-pulse twitch characteristics, and superimposed double-pulse twitch force (used to calculate voluntary activation) before and after an acute knee extension loading protocol. In our participants, who had previous resistance training experience, the mean voluntary activation level was 96.2% in an unfatigued state. Maximum voluntary contraction (?11.8%), resting double-pulse twitch force (?10.6%), and voluntary activation (?2.1%) were markedly decreased as a consequence of loading (P < 0.05). In addition, although potentiated twitch characteristics were observed during the loading protocol, this was short-lived, as fatigue surpassed the potentiation mechanisms. Our results show that both central and peripheral mechanisms contributed to neuromuscular fatigue during the present loading protocol.  相似文献   

12.
The aim of this study was to determine whether sex differences and effect of drop heights exist in stiffness alteration of the lower extremity during a landing task with a drop height increment. Twelve male participants and twelve female participants performed drop landings at two drop heights (DL40 and DL60; in cm). The leg and joint stiffnesses were calculated using a spring–mass model, and the joint angular kinematics were calculated using motion capture. Ground reaction forces (GRFs) were recorded using a force plate. The peak vertical GRF of the females was significantly increased when the drop height was raised from 40 to 60 cm. Significantly less leg and knee stiffness was observed for DL60 in females. The ankle, knee, and hip angular displacement during landing were significantly increased with drop height increment in both sexes. The knee and hip flexion angular velocities at contact were significantly greater for the 60 cm drop height relative to the 40 cm drop height in males. These sex disparities regarding the lower extremity stiffness and kinematics alterations during drop landing with a drop height increment would predispose females to lower extremity injury.  相似文献   

13.
ABSTRACT

The purpose was to quantify the effects of mid-flight whole-body and trunk rotation on knee mechanics in a double-leg landing. Eighteen male and 20 female participants completed a jump-landing-jump task in five conditions: no rotation, testing leg ipsilateral or contralateral (WBRC) to the whole-body rotation direction, and testing leg ipsilateral (TRI) or contralateral to the trunk rotation direction. The WBRC and TRI conditions demonstrated decreased knee flexion and increased knee abduction angles at initial contact (2.6 > Cohen’s dz > 0.3) and increased peak vertical ground reaction forces and knee adduction moments during the 100 ms after landing (1.7 > Cohen’s dz > 0.3). The TRI condition also showed the greatest knee internal rotation angles at initial contact and peak knee abduction and internal rotation angles and peak knee extension moments during the 100 ms after landing (2.0 > Cohen’s dz > 0.5). Whole-body rotation increased contralateral knee loading because of its primary role in decelerating medial-lateral velocities. Trunk rotation resulted in the greatest knee loading for the ipsilateral knee due to weight shifting and mechanical coupling between the trunk and lower extremities. These findings may help understand altered trunk motion in anterior cruciate ligament injuries.  相似文献   

14.
ABSTRACT

Previous research suggests that landing mechanics may be affected by the mechanics of the preceding jump take-off. The purpose of the present study was to investigate whether jump take-off mechanics influence the subsequent landing mechanics. Female volleyball (n = 17) and ice hockey (n = 19) players performed maximal vertical jumps with forefoot and heel take-off strategies. During forefoot and heel jumps, participants were instructed to shift their weight to their forefoot or heel, respectively, and push through this portion of the foot throughout the jump. Jump mechanics were examined using 3D motion analysis, where lower extremity net joint moment (NJM) work, NJM, and segment angles were compared between forefoot and heel jumps using multivariate ANOVA. During jump take-off, participants performed more positive ankle plantar flexor and knee extensor NJM work in forefoot compared to heel jumps (P < 0.05). From initial foot contact to foot flat, participants performed more negative ankle plantar flexor and hip extensor NJM work during heel compared to forefoot jumps (P < 0.05). The present results demonstrate that using a heel take-off strategy results in a different distribution of lower extremity NJM work and NJM during landing compared to landings following forefoot jumps.  相似文献   

15.
Gait retraining using visual biofeedback has been reported to reduce impact loading in runners. However, most of the previous studies did not adequately examine the level of motor learning after training, as the modified gait pattern was not tested in a dual-task condition. Hence, this study sought to compare the landing peak positive acceleration (PPA) and vertical loading rates during distracted running before and after gait retraining. Sixteen recreational runners underwent a two-week visual biofeedback gait retraining program for impact loading reduction, with feedback on the PPA measured at heel. In the evaluation of PPA and vertical loading rates before and after the retraining, the participants performed a cognitive and verbal counting task while running. Repeated measures ANOVA indicated a significant interaction between feedback and training on PPA (F = 4.642; = 0.048) but not vertical loading rates (F > 1.953; > 0.067). Pairwise comparisons indicated a significantly lower PPA and vertical loading rates after gait retraining (< 0.007; Cohen’s > 0.68). Visual feedback after gait retraining reduced PPA and vertical loading rates during distracted running (< 0.033; Cohen’s > 0.36). Gait retraining is effective in lowering impact loading even when the runners are distracted. In dual-task situation, visual biofeedback provided beneficial influence on kinetics control after gait retraining.  相似文献   

16.
Anterior cruciate ligament (ACL) injuries commonly occur during jump-landing tasks when individuals’ attention is simultaneously allocated to other objects and tasks. The purpose of the current study was to investigate the effect of allocation of attention imposed by a secondary cognitive task on landing mechanics and jump performance. Thirty-eight recreational athletes performed a jump-landing task in three conditions: no counting, counting backward by 1 s from a randomly given number, and counting backward by 7 s from a randomly given number. Three-dimensional kinematics and ground reaction forces were collected and analysed. Participants demonstrated decreased knee flexion angles at initial contact (p = 0.001) for the counting by 1 s condition compared with the no counting condition. Participants also showed increased peak posterior and vertical ground reaction forces during the first 100 ms of landing (p ≤ 0.023) and decreased jump height (p < 0.001) for the counting by 1 s and counting by 7 s conditions compared with the no counting condition. Imposition of a simultaneous cognitive challenge resulted in landing mechanics associated with increased ACL loading and decreased jump performance. ACL injury risk screening protocols and injury prevention programmes may incorporate cognitive tasks into jump-landing tasks to better simulate sports environments.  相似文献   

17.
Despite an increase in anterior knee laxity (AKL) during the adolescent growth spurt in girls, it is unknown whether landing biomechanics are affected by this change. This study investigated whether pubescent girls with higher AKL displayed differences in their lower limb strength or landing biomechanics when performing a horizontal leap movement compared to girls with lower AKL. Forty-six pubescent girls (10–13 years) were tested at the time of their peak height velocity (PHV). Passive AKL was quantified and used to classify participants into higher (HAKL; peak displacement > 4 mm) and lower (LAKL; peak displacement < 3 mm) AKL groups (n = 15/group). Three-dimensional kinematics, ground reaction forces (GRF) and muscle activation patterns were assessed during a horizontal leap landing. HAKL participants displayed significantly (P < 0.05) reduced hip abduction, increased hip abduction moments, as well as earlier hamstring muscle and later tibialis anterior activation compared to LAKL participants. Girls with HAKL displayed compensatory landing biomechanics, which are suggested to assist the functional stability of their knees during this dynamic task. Further research is warranted, however, to confirm or refute this notion.  相似文献   

18.
In this study, we investigated trunk coordination during rate-controlled bipedal vertical dance jumps. The aims of the study were to investigate the pattern of coordination and the magnitude of coordination variability within jump phases and relative to phase-defining events during the jump. Lumbar and thoracic kinematics were collected from seven dancers during a series of jumps at 95 beats per minute. The vector coding technique was used to quantify the pattern and variability of trunk coordination. Coordination was predominantly anti-phase during propulsion and landing. Mean coordination variability peaked just before the landing phase and at the transition from landing to propulsion phases, and was lowest during the propulsion phase just before toe-off. The results indicate that peaks in variability could be explained by task and phase-specific biomechanical demands.  相似文献   

19.
Knee injuries such as anterior cruciate ligament lesions and patellar tendonitis are very frequent in volleyball, and are often attributed to micro traumas that occur during the landing phase of airborne actions. The aim of the present study was to compare different jumping activities during official men's and women's volleyball games. Twelve top-level matches from the Italian men's and women's professional leagues were analysed. The jumps performed during the games were classified according to the landing technique used by the player (left or right foot or both feet together), court position, and ball trajectory. Chi-square analyses were performed to detect differences in landing techniques between the sexes, court positions, and trajectories when serving, attacking, blocking, and setting. Significant differences (P?相似文献   

20.
Overuse injuries, resulting from repetitive subacute impact loading, are a problem in high-performance sports. Monitoring of impact loading may aid in the prevention of these injuries. The current study aimed to establish the intra-day and inter-day reliability of a tri-axial accelerometer to assess impact loading during jumping and landing tasks. Twelve participants wore an accelerometer on their upper and lower back. They performed a continuous hopping task as well as drop landings and rebound jumps from three drop heights (37.5, 57.5 and 77.5 cm), peak resultant acceleration (PRA) was calculated for all tasks. The tasks were performed twice, one week apart at the same time of day. The difference in the mean, intra-class correlation coefficient, coefficient of variation and Cohen’s effect size were calculated as measures of reliability. PRA showed good intra-day reliability for the hopping task. Inter-day reliability of the PRA was moderate to good across all tasks. Reliability of PRA was slightly higher when accelerations were recorded on the lower back compared to the upper back. To assess impact loading, during continuous hopping, drop landings and rebound jumps, PRA recorded at both the upper and lower back appears to be a reliable measure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号