首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contribution of core neuromuscular control to the dynamic stability of badminton players with and without knee pain during backhand lunges has not been investigated. Accordingly, this study compared the kinematics of the lower extremity, the trunk movement, the muscle activation and the balance performance of knee-injured and knee-uninjured badminton players when performing backhand stroke diagonal lunges. Seventeen participants with chronic knee pain (injured group) and 17 healthy participants (control group) randomly performed two diagonal backhand lunges in the forward and backward directions, respectively. This study showed that the injured group had lower frontal and horizontal motions of the knee joint, a smaller hip–shoulder separation angle and a reduced trunk tilt angle. In addition, the injured group exhibited a greater left paraspinal muscle activity, while the control group demonstrated a greater activation of the vastus lateralis, vastus medialis and medial gastrocnemius muscle groups. Finally, the injured group showed a smaller distance between centre of mass (COM) and centre of pressure, and a lower peak COM velocity when performing the backhand backward lunge tasks. In conclusion, the injured group used reduced knee and trunk motions to complete the backhand lunge tasks. Furthermore, the paraspinal muscles contributed to the lunge performance of the individuals with knee pain, whereas the knee extensors and ankle plantar flexor played a greater role for those without knee pain.  相似文献   

2.
Athletes in the 3,000 m steeplechase track and field event negotiate unmovable hurdles and waterjumps. Ground reaction forces (GRF) in the steeplechase were quantified to elucidate injury risks / mechanisms and to inform coaches. Five male and five female steeplechasers participated. GRF were measured during treadmill running, and using specially mounted force platforms, during hurdle and waterjump takeoffs and landings at 5.54 m/s (males) or 5.00 m/s (females). Results are presented as: male mean ± SD / female mean ± SD. Initial and active peaks of vertical GRF during treadmill running were 2.04 ± 0.72 / 2.25 ± 0.28 BW and 3.11 ± 0.27 / 2.98 ± 0.24 BW. Compared to treadmill running, peak vertical forces were greater (p < 0.001) for: hurdle takeoff (initial: 4.25 ± 0.86 / 3.78 ± 0.60 BW, active: 3.82 ± 0.20 / 3.74 ± 0.32 BW), hurdle landing (active: 4.41 ± 1.13 / 4.21 ± 0.21 BW), waterjump takeoff (initial: 4.32 ± 0.67 / 4.56 ± 0.54 BW, active: 4.00 ± 0.24 / 3.83 ± 0.31 BW), and waterjump landing (initial: 3.45 ± 0.34 / #3.78 ± 0.32 BW, active:5.40 ± 0.78 / #6.23 ± 0.74 BW); (#) indicates not statistically compared (n = 2). Based on horizontal impulse, athletes decelerated during takeoff steps and accelerated during landing steps of both hurdling and waterjumps. Vertical GRF peaks and video indicated rearfoot strikes on the treadmill but midfoot strikes during hurdle and waterjump landings. Potentially injurious GRF occur during the steeplechase, particularly during waterjump landings (up to 7.0 BW).  相似文献   

3.
ABSTRACT

This study identified the effect of badminton lunging directions on impact characteristics, joint kinetics and measurement reliability. A total of 14 badminton players performed 20 lunges in both forehand and backhand sides. Ground reaction force (GRF) and three-dimensional joint moment variables were determined for further analyses. Paired t-tests and Wilcoxon signed-rank tests were performed to determine any differences between the two lunge directions and intra-class correlation (ICC) and sequential averaging analysis (SAA) were used to estimate the minimum number of trials. Compared to the forehand side, participants experienced significantly larger total GRF impulse (+ 3.8%, = 0.021) and transverse moment (hip + 63.5%, < 0.001; knee + 80.7%, = 0.011), but smaller hip (?7.7%), knee (?18.7%) and ankle frontal moments (?58.0%, < 0.05) in backhand lunges. The minimum number of trials was similar for both lunge directions, as the averaged absolute differences was less than one in both ICC and SAA. Furthermore, smaller minimal number of trials was determined by the ICC (7.9–8.0), compared with the SAA approach (9.5–10.3). Lunge direction would influence GRF and joint loading, but not on the measurement reliability. These results give important insights to establish performance or equipment evaluation protocols during badminton lunges.  相似文献   

4.
Abstract

Anterior cruciate ligament (ACL) rupture, during ski-landing, is caused by excessive knee joint forces and kinematics, like anterior tibial translation, internal tibial rotation, and valgus rotation. It is not well understood how these forces/kinematics are directly related to ski-landing impact. In the present study, we applied simulated ski-landing impact to knee specimens, and examined joint force/kinematic responses and their correlations with impact force. Ten human cadaveric knees were subjected to axial impact loading at 70° of flexion to simulate ski-landing impact. Impact was repeated with incremental magnitude until ACL failure. Axial impact forces, anterior-posterior and medial-lateral tibial forces were measured using a tri-axial load cell. Anterior-posterior tibial translation, internal-external tibial rotation, and valgus-varus rotation were determined using a motion-capture system. We found positive correlations of axial impact force with anterior tibial force, medial tibial force, anterior tibial translation, internal tibial rotation, and valgus joint rotation. Axial impact forces were more strongly correlated with anterior tibial forces (R 2 = 0.937 ± 0.050), anterior tibial translation (R 2 = 0.916 ± 0.059), and internal tibial rotation (R 2 = 0.831 ± 0.141) than medial tibial force (R 2 = 0.677 ± 0.193) and valgus joint rotation (R 2 = 0.630+0.271). During ski-landing, these joint forces/kinematics can synergistically act to increase ACL injury risk, whereby the failure mechanism would be dominated by anterior tibial forces, anterior tibial translation, and internal tibial rotation.  相似文献   

5.
Joint moments can be used as an indicator of joint loading and have potential application for sports performance and injury prevention. The effects of changing walking and running speeds on joint moments for the different planes of motion still are debatable. Here, we compared knee and ankle moments during walking and running at different speeds. Data were collected from 11 recreational male runners to determine knee and ankle joint moments during different conditions. Conditions include walking at a comfortable speed (self-selected pacing), fast walking (fastest speed possible), slow running (speed corresponding to 30% slower than running) and running (at 4 m · s?1 ± 10%). A different joint moment pattern was observed between walking and running. We observed a general increase in joint load for sagittal and frontal planes as speed increased, while the effects of speed were not clear in the transverse plane moments. Although differences tend to be more pronounced when gait changed from walking to running, the peak moments, in general, increased when speed increased from comfortable walking to fast walking and from slow running to running mainly in the sagittal and frontal planes. Knee flexion moment was higher in walking than in running due to larger knee extension. Results suggest caution when recommending walking over running in an attempt to reduce knee joint loading. The different effects of speed increments during walking and running should be considered with regard to the prevention of injuries and for rehabilitation purposes.  相似文献   

6.
Abstract

The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic–hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.  相似文献   

7.
The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic-hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.  相似文献   

8.
Abstract

Anticipatory postural adjustments (APAs), i.e. preparatory positioning of the head, the trunk and the foot, are essential to initiate cutting manoeuvres during football games. The aim of the present study was to determine how APA strategies during cutting manoeuvres are influenced by a reduction of the time available to prepare the movement.

Thirteen football players performed different cutting tasks, with directions of cutting either known prior to the task or indicated by a light signal occurring 850, 600 or 500 ms before ground contact.

With less time available to prepare the cutting manoeuvre, the head was less orientated towards the cutting direction (P = 0.033) and the trunk was even more rotated in the opposite direction (P = 0.002), while the foot placement was not significantly influenced. Moreover, the induced higher lateral trunk flexion correlated with the increased knee abduction moment (r = 0.41; P = 0.009).

Increasing lateral trunk flexion is the main strategy used to successfully perform a cutting manoeuvre when less time is available to prepare the movement. However, higher lateral trunk flexion was associated with an increased knee abduction moment and therefore an increased knee injury risk. Reducing lateral trunk flexion during cutting manoeuvres should be part of training programs seeking the optimisation of APAs.  相似文献   

9.
Aesthetic constraints allow dancers fewer technique modifications than other athletes to negotiate the demands of leaping. We examined vertical ground reaction force and knee mechanics during a saut de chat performed by healthy dancers. It was hypothesized that vertical ground reaction force during landing would exceed that of take-off, resulting in greater knee extensor moments and greater knee angular stiffness. Twelve dancers (six males, six females; age 18.9 ± 1.2 years, mass 59.2 ± 9.5 kg, height 1.68 ± 0.08 m, dance training 8.9 ± 5.1 years) with no history of low back pain or lower extremity pathology participated in the study. Saut de chat data were captured using an eight-camera Vicon system and AMTI force platforms. Peak ground reaction force was 26% greater during the landing phase, but did not result in increased peak knee extensor moments. Taking into account the 67% greater knee angular displacement during landing, this resulted in less knee angular stiffness during landing. In conclusion, landing was accomplished with less knee angular stiffness despite the greater peak ground reaction force. A link between decreased joint angular stiffness and increased soft tissue injury risk has been proposed elsewhere; therefore, landing from a saut de chat may be more injurious to the knee soft tissue than take-off.  相似文献   

10.
ABSTRACT

This study examined the effect of wearing time on comfort perception and landing biomechanics of basketball shoes with different midsole hardness. Fifteen basketball players performed drop landing and layup first step while wearing shoes of different wearing time (new, 2-, 4-, 6- and 8-week) and hardness (soft, medium and hard). Two-way ANOVA with repeated measures was performed on GRF, ankle kinematic and comfort perception variables. Increased wearing time was associated with poorer force attenuation and comfort perception during landing activities (p < 0.05). The new shoes had significantly smaller forefoot (2- and 4-week) and rearfoot peak GRF impacts (all time conditions) in drop landing and smaller rearfoot peak GRF impact (6- and 8-week) in layup; shoes with 4-week of wearing time had significantly better perceptions of forefoot cushioning, forefoot stability, rearfoot cushioning, rearfoot stability and overall comfort than the new shoes (p < 0.05). Compared with hard shoes, the soft shoes had better rearfoot cushioning but poorer forefoot cushioning (p < 0.05). Shoe hardness and wearing time would play an influential role in GRF and comfort perception, but not in ankle kinematics. Although shoe cushioning performance would decrease even after a short wearing period, the best comfort perception was found at 4-week wearing time.  相似文献   

11.
ABSTRACT

While foot orthoses are commonly used in running, little is known regarding biomechanical risk potentials during uphill running. This study investigated the effects of arch-support orthoses on kinetic and kinematic variables when running at different inclinations. Sixteen male participants ran at different inclinations (0°, 3° and 6°) when wearing arch-support and flat orthoses on an instrumented treadmill. Arch-support orthoses induced longer contact time, larger initial ankle dorsiflexion, maximum ankle eversion, and knee sagittal range of motion (RoM) (p < 0.05). As incline slopes increased, vertical impact peak and loading rate, stride length, and ankle coronal RoM decreased, but contact time, stride frequency, initial ankle dorsiflexion and inversion, maximum dorsiflexion, initial knee flexion, and ankle sagittal RoM increased (p < 0.05). Furthermore, knee sagittal RoM was lowest when running at an inclination of 3°. The interaction effect indicated that in arch-support condition, participants running at 6° induced higher maximum ankle eversion than running at 0° (p < 0.05), while no differences were found in flat orthosis condition. These findings suggest that the use of arch-support orthoses would influence running biomechanics that is related to injury risks. Running at higher inclination led to more alterations to biomechanical variables than at lower inclination.  相似文献   

12.
Race walking is an Olympic event where no visible loss of contact should occur and the knee must be straightened until midstance. The purpose of this study was to analyse ground reaction forces of world-class race walkers and associate them with key spatiotemporal variables. Nineteen athletes race walked along an indoor track and made contact with two force plates (1000 Hz) while being filmed using high-speed videography (100 Hz). Race walking speed was correlated with flight time (r = .46, p = .049) and flight distance (r = .69, p = .001). The knee's movement from hyperextension to flexion during late stance meant the vertical push-off force that followed midstance was smaller than the earlier loading peak (p < .001), resulting in a flattened profile. Athletes with narrower stride widths experienced reduced peak braking forces (r = .49, p = .046), peak propulsive forces (r = .54, p = .027), peak medial forces (r = .63, p = .007) and peak vertical push-off forces (r = .60, p = .011). Lower fluctuations in speed during stance were associated with higher stride frequencies (r = .69, p = .001), and highlighted the importance of avoiding too much braking in early stance. The flattened trajectory and consequential decrease in vertical propulsion might help the race walker avoid visible loss of contact (although non-visible flight times were useful in increasing stride length), while a narrow stride width was important in reducing peak forces in all three directions and could improve movement efficiency.  相似文献   

13.
ABSTRACT

This study examined the effects of shoe collar-height and counter-stiffness on ground reaction force (GRF), ankle and knee mechanics in landing. Eighteen university basketball players performed drop landing when wearing shoes in different collar height (high vs. low) and counter-stiffness (stiffer vs. less stiff). Biomechanical variables were measured with force platform and motion capturing systems. Two-way repeated measures ANOVA was performed with α = 0.05. Wearing high collar shoes exhibited smaller peak ankle dorsiflexion and total sagittal RoM, peak knee extension moment, but larger peak knee varus moment than the low collar shoes. Stiffer counter-stiffness shoes related to smaller ankle inversion at touchdown and total coronal RoM, but larger peak knee flexion and increased total ankle and knee sagittal RoM than the less stiff counter-stiffness. Furthermore, wearing stiffer counter-stiffness shoes increased forefoot GRF peak at high collar condition, while no significant differences between counter-stiffness at low collar condition. These results suggest that although higher collar height and/or stiffness heel counter used can reduce ankle motion in coronal plane, it would increase the motion and loading at knee joint, which is susceptible to knee injuries. These findings could be insightful for training and footwear development in basketball.  相似文献   

14.
Abstract

Weight-bearing activity has been shown to increase bone mineral density. Our purpose was to measure vertical ground reaction forces (GRFs) during cyclocross-specific activities and compute their osteogenic index (OI). Twenty-five healthy cyclocross athletes participated. GRF was measured using pressure-sensitive insoles during seated and standing cycling and four cyclocross-specific activities: barrier flat, barrier uphill, uphill run-up, downhill run-up. Peak and mean GRF values, according to bodyweight, were determined for each activity. OI was computed using peak GRF and number of loading cycles. GRF and OI were compared across activities using repeated-measures ANOVA. Number of loading cycles per activity was 6(1) for barrier flat, 8(1) barrier uphill, 7(1) uphill run-up, 12(3) downhill run-up. All activities had significantly (P < 0.01) higher peak GRF, mean GRF values and OI when compared to both seated and standing cycling. The barrier flat condition (P < 0.01) had highest peak (2.9 times bodyweight) and mean GRF values (2.3 times bodyweight). Downhill run-up (P < 0.01) had the highest OI (6.5). GRF generated during the barrier flat activity is similar in magnitude to reported GRFs during running and hopping. Because cyclocross involves weight bearing components, it may be more beneficial to bone health than seated road cycling.  相似文献   

15.
Limited evidence showed that higher workload increases knee forces without effects from changes in pedalling cadence. This study assessed the effects of workload and cadence on patellofemoral and tibiofemoral joint forces using a new model. Right pedal force and lower limb joint kinematics were acquired for 12 competitive cyclists at two levels of workload (maximal and second ventilatory threshold) at 90 and 70 rpm of pedalling cadence. The maximal workload showed 18% larger peak patellofemoral compressive force PFC (large effect size, ES) than the second ventilatory threshold workload (90 rpm). In the meantime, the 90-rpm second ventilatory threshold was followed by a 29% smaller PFC force (large ES) than the 70-rpm condition. Normal and anterior tibiofemoral compressive forces were not largely affected by changes in workload or pedalling cadence. Compared to those of previous studies, knee forces normalized by workload were larger for patellofemoral (mean = 19 N/J; difference to other studies = 20–45%), tibiofemoral compressive (7.4 N/J; 20–572%), and tibiofemoral anterior (0.5 N/J; 60–200%) forces. Differences in model design and testing conditions (such as workload and pedalling cadence) may affect prediction of knee joint forces.  相似文献   

16.
The players' ability to achieve the greatest distance in kicking is determined by their efficiency in transferring kinetic energy from the body to the ball. The purpose of this study was to compare the kinetics and kinematics of the plant leg position between male and female collegiate soccer players during instep kicking. Twenty-three soccer players (11 males and 12 females) were filmed in both the sagittal and posterior views while performing a maximal instep kick. Plant leg kinetic data were also collected using an AMTI 1000 force platform. There were no significant differences between the sexes in plant leg position, but females had significantly greater trunk lean, plant leg angle, and medial-lateral ground reaction force than the males. Males showed higher vertical ground reaction forces at ball contact, but there were no significant differences in ball speed at take-off between the sexes. Ball speed at take-off was inversely related to peak anterior–posterior ground reaction force ( ? 0.65). The anatomical differences between the sexes were reflected in greater trunk lean and lower leg angle in the females.  相似文献   

17.
The players' ability to achieve the greatest distance in kicking is determined by their efficiency in transferring kinetic energy from the body to the ball. The purpose of this study was to compare the kinetics and kinematics of the plant leg position between male and female collegiate soccer players during instep kicking. Twenty-three soccer players (11 males and 12 females) were filmed in both the sagittal and posterior views while performing a maximal instep kick. Plant leg kinetic data were also collected using an AMTI 1000 force platform. There were no significant differences between the sexes in plant leg position, but females had significantly greater trunk lean, plant leg angle, and medial-lateral ground reaction force than the males. Males showed higher vertical ground reaction forces at ball contact, but there were no significant differences in ball speed at take-off between the sexes. Ball speed at take-off was inversely related to peak anterior-posterior ground reaction force (-0.65). The anatomical differences between the sexes were reflected in greater trunk lean and lower leg angle in the females.  相似文献   

18.
Although landing in a plantarflexion and inversion position is a well-known characteristic of lateral ankle sprains, the associated kinematics of the knee and hip is largely unknown. Therefore, the purpose of this study was to examine the changes in knee and hip kinematics during landings on an altered landing surface of combined plantarflexion and inversion. Participants performed five drop landings from 30 cm onto a trapdoor platform in three different conditions: flat landing surface, 25° inversion, or a combined 25° plantarflexion and 25° inversion. Kinematic data were collected using a seven camera motion capture system. A 2 × 3 (leg × surface) repeated measures ANOVA was used for statistical analysis. The combined surface showed decreased knee and hip flexion range of motion (ROM) and increased knee abduction ROM (p < 0.05). The altered landing surface creates a stiff landing pattern where reductions in sagittal plane motion are transferred to the frontal plane, resulting in increased knee abduction. A stiff landing pattern is frequently related to increased risk of anterior cruciate ligament injury. It may be beneficial for athletes at risk to train for alternate methods of increasing their sagittal plane motion of the knee and hip with active knee or trunk flexion.  相似文献   

19.
Biomechanical understanding of the knee joint during a golf swing is essential to improve performance and prevent injury. In this study, we quantified the flexion/extension angle and moment as the primary knee movement, and evaluated quasi-stiffness represented by moment–angle coupling in the knee joint. Eighteen skilled and 23 unskilled golfers participated in this study. Six infrared cameras and two force platforms were used to record a swing motion. The anatomical angle and moment were calculated from kinematic and kinetic models, and quasi-stiffness of the knee joint was determined as an instantaneous slope of moment–angle curves. The lead knee of the skilled group had decreased resistance duration compared with the unskilled group (P < 0.05), and the resistance duration of the lead knee was lower than that of the trail knee in the skilled group (P < 0.01). The lead knee of the skilled golfers had greater flexible excursion duration than the trail knee of the skilled golfers, and of both the lead and trail knees of the unskilled golfers. These results provide critical information for preventing knee injuries during a golf swing and developing rehabilitation strategies following surgery.  相似文献   

20.
Swing trajectory and ground reaction forces (GRF) of 30 collegiate baseball batters hitting a pitched ball were compared between a standard bat, a bat with extra weight about its barrel, and a bat with extra weight in its handle. It was hypothesised that when compared to a standard bat, only a handle-weighted bat would produce equivalent bat kinematics. It was also hypothesised that hitters would not produce equivalent GRFs for each weighted bat, but would maintain equivalent timing when compared to a standard bat. Data were collected utilising a 500 Hz motion capture system and 1,000 Hz force plate system. Data between bats were considered equivalent when the 95% confidence interval of the difference was contained entirely within ±5% of the standard bat mean value. The handle-weighted bat had equivalent kinematics, whereas the barrel-weighted bat did not. Both weighted bats had equivalent peak GRF variables. Neither weighted bat maintained equivalence in the timing of bat kinematics and some peak GRFs. The ability to maintain swing kinematics with a handle-weighted bat may have implications for swing training and warm-up. However, altered timings of kinematics and kinetics require further research to understand the implications on returning to a conventionally weighted bat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号