首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
当a_1,a_2,…,a_n为正实数时,有 1/n sum from i=1 to n(a_i~n)≥multiply from i=1 to n(a_i)当且仅当a_1=a_2=…=a_n时取等号。事实上,该不等式可用(sum from i=1 to n(1/n)a_i)~n分隔,即(1/n)sum from i=1 to n(a_i~n)≥((1/n)sum from i=1 to n(a_i))~n≥multiply from i=1 to n(a_i)当且仅当a_1=a_2=…=a_n时取等号。  相似文献   

2.
在应用初等方法,求如下类型的函数y(x)=sum from i=1 to ∞(1/n)a_ix~k_i……(1)(n为不小于2的自然数,a_i>O,x>0,K_i为非零整数且sum from i=1 to ∞(1/n)K_i=0的值域时,因sum from i=1 to ∞(1/n)K_i=0的诱发,极易上基本不等式a_1+a_2+…+a_n/n≥a_1a_2…a_n~(1/n)……(2)(n为不小于2的自然数,a_i均为正数;当且仅当a_1=a_2=…=a_n时,等式成立)的当!请看下面的例1:  相似文献   

3.
胡道煊同志在文[1]中曾绐出了如下的不等式:sum from i=1 to n((a_i~m)/(b_i))≥n~(2-m)·((sum from i=1 to n(a_i))~m/sum from i=1 to n(b_3))。(1)其中a_i、b_i>0,(i=1,2,…,n),且|m|≥1。 此处我们说(1)是一个不恒成立的不等式。例如取n=2,b_1=a_1,b_2=a_2,m=3/2,则有  相似文献   

4.
若a∈R_ ,则有a≥2-1/a (*),等号当且仅当a=1时成立. 不等式(*)不仅结构简单,而且利用它还可以简捷地证明一些较难的不等式.下面举几例说明. 例1 设a_i,b_i∈R_ ,且sum from i=1 to n(a_i)=sum from i=1 to n(b_i),求证sum from i=1 to n(a_i~z)/(a_i b_i)≥1/2 sum from i=1 to n(a_i).(1991年亚太地区数学竞赛题)  相似文献   

5.
命题设χ_i,a_i∈R~ (i=,2,3……,n),且sum from i=1 to n(χ_i)=(定值),则当χ_i=m(a_i)~(1/2)/sum from i=1 to n(i=1,2,……,n)时,和sum from i=1 to n(a_i/χ_i)取最小值,其最小值为1/m((sum from i=1 to n(a_i~(1/2)))~2  相似文献   

6.
定理 设A_1A_2…A_5是凸五边形,记A_iA_(i 1)=a_i,A_iA_(i 2)=m_i(i=1,2,…,5约定A_6=A_1,A_7=A_2),则 sum from i=1 to 5m_i~2相似文献   

7.
我们知道,柯西不等式:a_i,b_i∈R,则sum from i=1 to n a_i~2 sum from i=1 to n b_i~2≥(sum from i=1 to n a_ib_i)~2……(1)当且仅当a_i=kb_i(i=1,2,…,n)不等式等号成立。它可以作如下变形: 由(1)得(sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2)≥sum from i=1 to n a_ib_i,添项变为sum from i=1 to n a_i~2 2 (sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2) sum from i=1 to n b_i~2≥sum from i=1 to n a_i~2 2sum from i=1 to n a_ib_i sum from i=1 to n b_i~2,或sum from i=1 to n a_i~2-2 (sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2) sum from i=1 to n b_i~2≤sum from i=1 to n a_i~2-2 sum from i=1 to n a_i b_i sum from i=1 to n b_i~2,分别配方,并开方转  相似文献   

8.
通过研究,得知 sum i=1 to n+1 a_ic_n~(i-1)的结果与数列有密切的关系,有以下二个定理:定理1:当数列{a_i}是等比数列时,sum i=1 to n+1 a_ic_n~(i-1)=a_i(1+q)~n证明如下:∵{a_i}是等比数列,不妨设公比为 qsum i=1 to n+1 a_ic_n~(i-1)=a_1c_n~0+a_2c_n~+1+a_3c_n~2+…+a_bc~(n-1)_n+a_(n+1)c~n_n=a_1c~0_n+a_1c~1_nq+a_1c~2_nq~2+…+a_1c~n_nq~n=a_1(1+q)~q  相似文献   

9.
本文将切比雷夫不等式:“a_1≥a_2≥…≥a_n,b_1≥b_2≥…≥b_n(?)(sum from i=1 to n a~i)(sum from j=1 to n b_j)≤n sum from i,j to n a_ib_j”作如下的推广:如果{a_i}_(i=1)~n与{b_j}_(i=1)~n同时为单调增加或单调减少实数列,那么对于任何实数列{c_i}_(i=1)~n有(sum from i=1 to n a_ib_ic_i)(sum from i=1 to n c_i)(?)(sum from i=1 to n a_ic_i)(sum from j=1 to n b_jc_j) ……(Ⅰ) 如果{a_i}_(i=1)~n与{b_j}_(j=1)~n中有一个单调增加而另一个单调减少,那么对于任何非负实实数列{c_i}_(i=1)~n有(sum from i=1 to n a_ib_(ii))(sum from i=1 to n c_i)≤(sum from i=1 to n a_ic_i)(sum from j=1 to n b_jc_j)……(Ⅱ) 如果{c_i}_(i=1)~n为正的实数列,那么不等式(Ⅰ)、(Ⅱ)中的等号成立当且仅当{a_i}_(i=1)~n或{b_j}_(j=1)~n 中有一个是常数列。如果取c_i=1(i=1,2,…,n,那么就得原来的不等式。推广后的切比雷夫不等式的证明:在第一种情形下,sum from i=1 to n sum from j=1 to n (a~i-a_j)(b_i-b_j)c_ic_j  相似文献   

10.
若n个正数为a_i(i=1,…,n),则A_n=1/n sum from i=1 to n(a_i)为其算术平均数,G_n=(multiply from i=1 to n(a_i)~1/n为其几何平均数。它们的关系有著名的平均值不等式:A_n≥G_n,当且仅当a_1=a_2=…=a_n时取等号。 本文研究的是关于算术平均数与几何平均数之差(即A_n-G_n)的不等式,简称均差不等式,并简单地举例说明它的应用。 先介绍一个引理:  相似文献   

11.
本刊[1]文中将不等式 1/n sum from i=1 to n a_i~n≥multiply from i=1 to n a_i(a_i∈R~+,i=1,2,…,n) 作了如下隔离 1/n sum from i=1 to n a_i~n≥(1/n sum from i=1 to n a_i)~n≥multiply from i=1 to n a_i (1) 但美中不足的是其证明过程中运用了二阶导数和凸函数的有关知识,不宜中学生阅读和接受。为此,本文给出(1)式的一个简捷的初等证明。证明:由算术—几何平均  相似文献   

12.
1 广义循环不等式 1954年,美国数学家萨碧洛曾提出猜想:设a_1∈R~+,i=1,2,…,n,n≥3,n∈N,则 sum from i=1 to n(a_i/(a_(i+1)+a_(i+2)))≥n/2 (1)其中,a_(n+1)=a_1,a_(n+2)=a_2,此即著名的循环不等式[1]。此不等式和谐匀称优美,但遗憾的是当n为不小于14的偶数及不小于25时,(1)式不成立,反例见[1]。为使(1)式成立,[2],[3]等文献分别从加强条件和改变结论两方面对(1)式进行校正。本文旨在对(1)式校正并加以推广,主要结果是:  相似文献   

13.
在柯西不等式:(sum from i=1 to n a_i~2)·(sum from i=1 to n b_i~2)≥(sum from i=1 to n a_ib_i)~2(其中a_i,b_i∈R,i=1,2,…,n)  相似文献   

14.
数列的通项公式揭示了这个数列的内在规律。中学教材中,对等差数列、等比数列作了重点介绍,本文想在此基础上作一些推广。首先我们定义:multiply from i=k to n f(i)=1(k>n) 定理一:在数列{a_n}中已知a_1且满足 a_n=f(n)a_(n-1)+g(n) (n=2,3,4…)则a_n=a multiply from i=2 to n f(i)+sum from i=2 to n[g(i) multiply from i=i to n-1 f(i+1)] 证明:1°n=2,右边=f(2)a_1+g(2)=a_2 2°假定当n=k时命题成立即  相似文献   

15.
设a_1,a_2,…,a_n和b_1,b_2,…,b_n为两组实数,则有((sum from i=1 to n(a_ib_i))~2≤(sum from i=1 to n(a_i~2))(sum from i=1 to n(b_i~2)))。式中等号当且仅当a_1/b_1=a_2/b_2=…=a_n/b_n时成立。特别地,当b_1=b_2=…=b_n=1时,有 a_1~2 a_2~2 … a_n~2≥1/n(a_1 a_2 … a_n)~2。 以上第一个不等式称为柯西不等式,其证明方法很多,在此不再赘述。  相似文献   

16.
第二十九届国际数学奥林匹克竞赛有一道非常难的预选题: 命题 设a_i>0,β_i>0(1≤n,n>1),且sum from i=1 to n a_i=sum from i=1 to n β_i=π. 证明:sum from i=1 to n cosβ_i/sina_i≤sum from i=1 to n ctga_i (1) (蒙古提供)  相似文献   

17.
性质:设{a_n}为等差数列,则(1) 1/(2k-1)sum from i=1 to (2k-1)(a_i=a_k).(2)1/2k sum from i=1 to 2k(a_i=(a_k a_(k 1))/2).此性质可叙述为:等差数列奇数项的算术平均值等于中间一项;等差数列偶数项的算术平均值等于中间两项的算术平均值.证明:设d为等差数列{a_n}的公差,则a_i=a_k (i-k)d=(a_k-kd) id(i=1,2,…)应用这个性质,可给出一些高考数列题的简解.例1.在等基数列{a_n}中,若a_3 a_4 a_5 a_6 a_7=450,则a_2 a_8的值等于( ).(A)45,(B)75,(C)180,(D)300.(1991年上海高考题)  相似文献   

18.
因式分解是中学代数的重要内容,对于形式为 F(x_1,…,x_n)= sum from i,y=1 to n a_(ij)x_ix_j+2 sum from i=1 to n a_ix_i+d,(其中a_(ij)=a_(ji))的实n元二次多项式,由于没有一个通用有效的一般解法,往往使我们不知从何下手。文[1]给出了一种分解方法,但此方法比较复杂。本文将给出一个一般方法,这种方法在分解过程中只需遵循一个基本方法:配平方法。我们把(1)中的二次齐次部分用 f(x_1,…,x_n)=sum from i,y=1 to n a_(ij)x_ix_j表示,并且我们总可假设x_1~2的系数a_(11)≠0,若a_(11)=0,但有某个a_(ii)≠0,用变量替换  相似文献   

19.
用手工方法近似计算收敛级数的和往往十分繁琐,电子计算机具有计算速度快,精度高的优点,是用来求收敛级数的和的理想工具。由于级数sum from i=1 to ∞(a_i)的和一般只能用部分和S_n=sum from i=1 to n(a_i)来近似代替,因此关键是要确定达到给定的精度,必需计算到哪一项。也就是说,对预先给定的ε,n为多大时,余项R_n=sum from i=n 1 to ∞(a_i)能有|R_n|<ε。下面对二类收敛级数进行讨论。 一、求p级数sum from i=1 to ∞(1/i~p)(p>1)和的近似值  相似文献   

20.
设欲证不等式为A_n相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号