首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 883 毫秒
1.
组合恒等式证明问题,一般难度较大,学生往往不易掌握。下面就来谈谈组合恒等式证明的几种方法。 1.置换法。在公式(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…+C_n~ra~(n-r)b~r+…+C_n~nb~n中,适当地选择某个数来置换a和b,原恒等式即可得证。例1.求证:①2~n-C_n~12~(n-1)+C_n~22~(n-2)+…+(-1)~(n-1)C_n~(n-1)2+(-1)~n=1; ②3~n-C_n~13~(n-1)+C_n~23~(n-2)+…+(-1)~(n-1)C_n~(n-1)3+(-1)~n=2~n。  相似文献   

2.
填空题是数学竞赛中常见的一种题型,它不同于选择题,也不同于解答题,具有“不必表叙推算过程,只要直接写出结果”的特点。那么,如何在较短的时间内迅速、准确地得到填空题的答案呢?本文笔者就一些竞赛填空题的巧解,对这个问题作一些探讨。一、整体把握从问题的整体结构出发,通过对其全面、深刻地考察,合理、有效地转化,往往能从整体上揭开问题的本质,从宏观上找到解题的方法。例1 设n=1990,则1/2~n(1-3C_n~2+3~2C_n~4-3~3C_n~6+…+3~(994)C_n~(1988)-3~(995)C_n~(1990))=___。  相似文献   

3.
先看一个例题: 例1 求证:C_n~1/-C_n~2/2+C_n~3/3-……+(-1)~(n-1)·C_n~n/n=1+1/2+1/3+……+1/n。求证式等号两边均有n项。可用递推方法证之。证明:记S_n=C_n~1/1-C_n~3/2+C_n~3/3-……+(-1)~(n-1),C_n~n/n。  相似文献   

4.
组合数恒等式是初等数学中的一个重要课题。这类命题的特点是:结构比较复杂,解法灵活多变,初学者不易掌握。本文试通过若干实例,总结常用的解题思路。 1.恰当选择数学横型有些命题与组合的意义密切相关,待证等式的两边,可以看作同一组合问题用不同方法计算组合数的结果。对于这类命题,可以从选择数学模型人手。联系组合的定义,联系加法原理和乘法原理,用说理的方法来证明。例1 试证: C_r~oC_n~m+C_r~1C_n~(m-1)+C_r~2C_n~(m-2)+……+C_r~(m-1)C_n~1+C_r~mC_n~o=C_(n+r)~m。证明设有n+r个不同的元素,我们用两种方法计算每次取出m个元素的组合数:  相似文献   

5.
<正>通过学习我们知道:1.(a+b)~2=a~2+2ab+b~22.(a+b)~3=a~3+3a~2b+3ab~2+b~33.(a+b)~n=a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…C_n~(n-1)ab~(n-1)+b~n这是二项式定理,在学习中我发现,关于(a+b)~n的展开式也可以给出如下证明:(a+b)~n是n个(a+b)相乘,属于多项式乘多项式的问题,每个(a+b)在相乘  相似文献   

6.
本文给出组合恒等式C_n~1+2C_N~2+3C_n~3+…+nC_n~n=n·2~(n-1)的六种证法.这个组合恒等式在证明其它组合恒等式和计算组合数的和时常常有用.  相似文献   

7.
一、用导数例1.求证:C_n~1+2C_n~2+3C_n~3+…+nC_n~n=n·2~(n-1) 证将(1+x)~n=C_n~0+C_n~1x+C_n~2x~2+…+C_n~nx~n两边对x求导数再命x=1  相似文献   

8.
一九八五年全国高等学校招生统一考试数学(理工农医类)第二(4)题是这样一道题:设(3x-1)~6=a_6x~6 a_5x~5 a_x~4 a_3x~3 a_2x~2 a_1x a_0,求a_6 a_5 a_4 a_3 a_2 a_1 a_0的值。在阅卷中发现不少考生在草稿上是通过二项展开公式去求的。这样即便解对,亦非良法。事实上,我们只要对试题稍作分析便知,若在题设中令x=1,则其右边便是所要求值的代数式,而左边为常数2~6,即为所求。这种思想方法其实也正是教材所要求掌握的。高中代数第三册p75例1、例2在证明恒等式C_n~0 C_n~1 C_n~2 … C_n~n=2~n及C_n~0 C_n~2 C_n~4 …=C_n~1 C_n~3 C_n~5 …=2~(n-1)时,就是由对二项展开式中的a、b巧赋特殊值得到的。类似地,  相似文献   

9.
所谓“赋值法”,是指对式中某些变量任意赋以恰当的数值或代数式后,用以解题的一种方法。这种方法在教材中已经出现。例如C_n~0+C_n~1+C_n~2+…C_n~n=2~n的性质,就是从(a+b)~n的展开式中令a=1 b=1得来。本文准备再补充几个例子,作一些粗浅的探讨。 (一) 用于因式分解例1.分解因式x~4+x~3+x~2+2 解:设x~4+x~3+x~2+2≡(x~2+Ax+1)(x~2+Bx+2) 令x=i,整理得2-i=-AB+Ai  相似文献   

10.
文[1]提出用待定系数法求sum from j=0 to n (j~K C_n~5)的表达式,但该法不太理想,本文介绍另外两种方法,供大家参考。一、导数法展开(1+x)~n,我们有恒等式 C_n~0+C_n~1x+C_n~2x~2+…+C_n~nx~n=(1+x)~n (1) 在(1)式中对x求导得 C_n~1+2C_n~2x+3C_n~3x~2+…+nC_n~nx~(n-1)=n·(1+x)~(n-1) (2) 在(2)式两端乘以x,然后再对x求导得  相似文献   

11.
让我们先看下面两个例题: 例1 求证C_(n-1)~m C_(n-2)~m C_(n-3)~m… C_(m 1)~m C_m~m=C_n~(m 1) 证明:由等比数列求和公式知(1 x)~(n-1) (1 x)~(n-2) (1 x)~(n-3) … (1 x)~(m 1) (1 x)~m=((1 x)~n-(1 x)~m)/x上式左边x~m项的系数是 C_(n-1)~m C_(n-2)~m C_(n-3)~m … C_(n 1)~m C_m~m,上式右边的分子中,x~(m 1)项的系数是G_n~(m 1),应当相等,故等式成立。例2 证明: C_n~1 2C_n~2 3C_n~3 … C_n~n=n2~(n-1)。证明:将等式  相似文献   

12.
对于形如C_n~0+C_n~k+C_n~(2k)+…+C_n~(lk)(其中k、l∈N。n-k相似文献   

13.
现行高三数学中学到了二项式定理:(a+b)~n=C_n~0a~n+a_n~1a~(n-1)b+C_n~2a~(n-2)b~2+……+C_n~nb~n。若令a=1,b=1,代入上式,就得到(1+1)~n=C_n~0+C_n~1+C_n~2+……+C_n~n,这是全组合公式,即从n个元素中一个也不取,取一个、取二个、……、取n个元素的组合总数,那么(1+2)~n的展开式的组合原理是什么呢?或者说,它的数学模型是什么?下面我们先看一个具体问题。  相似文献   

14.
高中数学第三册第160页题23(1)是一道在证明方法上很有启发性的复习题。这道题启示我们利用(1+x)~n·(1+x)~n=(1+x)~(2n)来证明组合恒等式(C_n~0)~2+(C_n~1)~2+…+(C_n~n)~2=(2n)!/n!·n!①事实上,恒等多项式  相似文献   

15.
对偶思想是指,在求解数学问题时,根据题目中一个式子的结构特征,构造一个与之地位完全相伺,彼此间存在内在联系的对偶式,通过二者的协同作用,从而使问题获得巧妙解答.下面介绍几种常用方法,供参考.一、倒序对偶.把已知式的各部分施以倒序调节,所得式子称为已知式的倒序对偶式,再把它们对应部分相加(或相乘),促使问题解决.例1.证明:C_n~1 2C_n~2十3C_n~3十… nC_n~n=n·2~(n-1)证明:设M=C_n~1 2C_n~2 3C_n~3 … (n一1)C_n~(n-1)十nC_n~n,其倒序对偶式为:M’=nC_n~n (n-1)C_n~n (n-2)C_n~(n-2) … C_n~1两式相加得2M=nC_n~n nC_n~(n-1) nC_n~(n-2) … nC_n~1 nC_n~n=n(C_n~n C_n~1 C_n~3 … C_n~n)=n·2~n,∴M=n·2~(n-1).例2.求M=(1 tg1°)(1 tg2°)……(1 tg44°)的值解:注意到1° 44°=2° 43°=…=45°可构成M的倒序对偶式M’,M’=(1 tg44°)(1 tg43°)……(1 tg2°)(1 tg1°),两式相乘得:  相似文献   

16.
关于组合恒等式的证明方法大体可归纳为如下一些: 一、在二项展开式中直接代入特别值而得组合恒等式二项展开式为 C_n~0 C_n~1x C_n~2x~2 … C_n~nx~n=(1 x)~n,其中 C_n~k=(n(n-1)…(n-k 1))/(k!)=(n!)/((n-k)!k!),k≤n,且规定C_n~0=1。若令x=1得 C_n~0 C_n~1 C_n~2 … C_n~n=2~n.(1) 令x=-1得 C_n~0-C_n~1 C_n~2-… (-1)~nC_n~n=0,(2)或 C_n~0 C_n~2 …=C_n~1 C_n~3 … *) (3) *)本  相似文献   

17.
由二项式定理:(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+…+C_n~nb~n,(a-b)~n=C_n~0a~n-C_n~1a~(n-1)b+…+(-1)~nC_n~nb~n相加可得 (a+b)~n+(a-b)~n =2(C_n~ca~n+C_n~2a~(n-2)b~2+C_n~4a~(n-4)b~4+…)。(*)合理利用(*)式,可解答几类难度较大的问题。  相似文献   

18.
关于二项式定理的证明,课本上用的是数学归纳法。数学教师也未提供其它的证明方法。经过探索,现提供一种新的简捷证法。定理: (a+b)~n=C_n~0+C_n~(n-1)b+···+C_n~ka~(n-k)b~k+···+C_n~(n-1)ab~(n-1)+C_n~nb~n (n∈)N  相似文献   

19.
高中数学学过 C_n~0+C_n~1+C_n~2+…+C_n~n=2~n, C_n~1+2C_n~2+…+nC_n~n=n·2~(n-1), 即sum from j=0 to n C_n~j=2~n,(1) sum from j=0 to n jC_n~j=n·2~(n-1)。(2)  相似文献   

20.
高中代数第三册P83有这样一道习题:例1.证明 C_n~1 2C_n~2 3C_n~3 … nC_n~n=n·2~(n-1).这道习题实质上就是求左边这些组合数的和,这些组合数前面的系数有一定的规律,下面对这类组合数求和问题作些探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号