首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, two new estimation approaches namely delay-dependent-matrix-based (DDMB) reciprocally convex inequality approach and DDMB estimation approach, are introduced for stability analysis of time-varying delay systems. Different from existing estimation techniques with constant matrices, the estimation approaches are with delay-dependent matrices, which can employ more free matrices and utilize more information of both time delay and its derivative. Based on the estimation approaches, less conservative stability criteria with lower computational complexity are derived in the form of linear matrix inequalities (LMIs). Finally, two numerical examples are given to illustrate the advantages of the proposed methods.  相似文献   

2.
The asymptotic stability of linear neutral systems with a single delay is investigated in this article. Based on the characteristic equation, new algebraic criteria for the stability of the system are derived in terms of the spectral radius of corresponding modulus matrices. The significance of our new criteria is that it takes into consideration the structure information of the system matrices, thus reducing the conservatism found in the literature. Numerical examples are given to demonstrate the new stability criteria and to compare them with the previous results in the literature.  相似文献   

3.
In this paper, the stability of grey discrete-time systems is discussed whose state matrices are interval matrices. A new approach is obtained which guarantee the stability of grey discrete-time systems. The sufficient condition for robust stability of grey time delay systems subjected to interval systems is also derived. By mathematical analysis, the stability criterion is less conservative than those in previous results. Examples are given to compare the proposed method with reported recently.  相似文献   

4.
This paper is concerned with robust stability analysis of second-order linear time-varying (SLTV) systems with time-varying uncertainties (perturbations). With the specific Lyapunov functions, a simple and neat algebraic criterion for testing uniformly asymptotic stability of SLTV systems are derived. Without transformation to a system of first-order equations, the new conditions are imposed directly on the time-varying coefficient matrices of the system. The main feature of the proposed algebraic criterion is that the uncertain coefficient matrices are time-varying and not necessarily symmetric. Finally, the proposed stability conditions are used to design the extending space structures system of the spacecraft. Simulation results are provided to illustrate the convenience and effectiveness of the proposed method.  相似文献   

5.
This paper is focused on delay-dependent stability problem of time-varying delay systems. By introducing delay-derivative-dependent slack matrices, relaxed stability conditions are derived based on Lyapunov-Krasovskii functional approach. As the delay-derivative-dependent slack matrices provide extra freedom to optimize the Lyapunov matrices, less conservative results are obtained. Two benchmark examples are provided to verify the effectiveness of the proposed approach.  相似文献   

6.
This paper investigates stability problems of a class of nonlinear impulsive switching systems with time-varying delays. Based on the common Lyapunov function method and Razumikhin technique, several stability criteria are established for nonlinear impulsive switching systems with time-varying delays. Our results show that switching systems can be stabilized by impulsive switching signals even if the system matrices are all unstable. In the absence of impulses, some of our results reduce to similar stability criteria for nonimpulsive switching systems in some recent research articles. Several examples with simulations are given to illustrate the efficiency of our results.  相似文献   

7.
This paper is concerned with the stability analysis of linear systems with time-varying delays. First, by introducing the quadratic terms of time-varying delays and some integral vectors, a more suitable Lyapunov-Krasovskii functional (LKF) is constructed. Second, two new delay-dependent estimation methods are developed in the stability analysis of linear system with time-varying delays, which include a reciprocally convex matrix inequality and an integral inequality. More information about time-varying delays and more free matrices are introduced into the two estimation approaches, which play a key role for obtaining an accurate upper bound of the integral terms in time derivative of LKFs. Third, based on the novel LKFs and new estimation approaches, some less conservative criteria are derived in the form of linear matrix inequality (LMI). Finally, three numerical examples are applied to verify the advantages and effectiveness of the newly proposed methods.  相似文献   

8.
This paper addresses the problem of the delay-dependent stability for neutral Markovian jump systems with partial information on transition probability. The time delays discussed in this paper are time-varying delays. Combined the new constructed Lyapunov functional with the introduced free matrices, and using the analysis technique of matrix inequalities, the delay-dependent stability conditions are obtained. The obtained results are formulated in terms of LMIs, which can be easily checked in practice by Matlab LMI control toolbox. Three numerical examples are given to show the validity and potential of the developed criteria.  相似文献   

9.
This paper investigates the problem of stability and state-feedback control design for linear parameter-varying systems with time-varying delays. The uncertain parameters are assumed to belong to a polytope with bounded known variation rates. The new conditions are based on the Lyapunov theory and are expressed through Linear Matrix Inequalities. An alternative parameter-dependent Lyapunov-Krasovskii functional is employed and its time-derivative is handled using recent integral inequalities for quadratic functions proposed in the literature. As main results, a novel sufficient stability condition for delay-dependent systems as well as a new sufficient condition to design gain-scheduled state-feedback controllers are stated. In the new proposed methodology, the Lyapunov matrices and the system matrices are put separated making it suitable for supporting in a new way the design of the stabilization controller. An example, based on a model of a real-world problem, is provided to illustrate the effectiveness of the proposed method.  相似文献   

10.
Dynamical systems in the real world are always subject to various disturbances. This paper studies the dynamics of linear delayed systems with decaying disturbances, both discrete- and continuous-time cases are considered. It is first shown that if an unforced linear system is exponentially stable, then the disturbed system has a dynamical property like exponential stability provided that the disturbance decays at an exponential rate, and has a dynamical property like asymptotic stability provided that the disturbance asymptotically approaches zero. These results are then applied to block triangular systems in the presence of time-varying delays, leading to criteria for checking the stability properties of this class of systems by considering diagonal blocks of system matrices. Particularly, a block triangular system is exponentially stable if and only if each system described by the diagonal blocks of system matrices is exponentially stable. Finally, a numerical example is presented to illustrate the theoretical results.  相似文献   

11.
In this paper, the problem of delay-dependent stability analysis of fractional-order systems with time-varying delay is investigated. First, a class of novel fractional-order integral inequalities for quadratic functions by constructing appropriate auxiliary functions is proposed, which has been proven to be useful in analyzing fractional-order systems with time-varying delay. Based on these proposed inequalities, the Lyapunov–Krasovskii functions are designed to deal with the time-varying delay terms, reducing the conservatism of the stability criteria. Furthermore, delay-dependent criteria are derived to achieve asymptotic stability of fractional-order systems with time-varying delay. Finally, two examples are provided to illustrate the effectiveness and feasibility of the proposed stability criteria.  相似文献   

12.
This paper is concerned with the stability analysis of time-delay systems. Lyapunov–Krasovskii functional method is utilized to obtain stability criteria in the form of linear matrix inequalities. The main purpose is to obtain less conservative stability criteria by reducing the estimation gap of the time derivative of the constructed Lyapunov–Krasovskii functional. First, a generalized multiple-integral inequality is put forward based on Schur complement lemma. Then, some special cases of the proposed generalized multiple-integral inequality are given to estimate single and double integral terms in the derivative of Lyapunov–Krasovskii functional. Furthermore, less conservative stability criteria are derived. Finally, three examples are given to illustrate the improvement of the proposed criteria.  相似文献   

13.
This paper is concerned with the quadratic stability analysis and robust distributed controllers design of both continuous-time and discrete-time uncertain spatially interconnected systems (USISs), where uncertainties are modeled by linear fractional transformation (LFT). The well-posedness, quadratic stability, and contractiveness of USISs are properly defined for the first time. A sufficient condition employing the given system matrices is established to check the well-posedness, quadratic stability and contractiveness. This condition is simpler than the existing conditions based on the decomposition of system matrices. Based on the new condition derived, a sufficient condition is given for the existence of robust distributed controllers and a constructive method is then presented for the design of robust distributed controllers. The advantage of the proposed constructive approach is that it employs the given system matrices while the existing methods conduct the bilinear transformation on these matrices when design controllers, and consequently, the constructive approach in this paper is computationally more efficient than the existing methods. Several examples are included to demonstrate the simplicity, efficiency and applicability of the derived theoretical results.  相似文献   

14.
This paper investigates the generalized matrix projective synchronization problem of general colored networks with different-dimensional node dynamics. A general colored network consists of colored nodes and edges, where the dimensions of colored node dynamics can be different in addition to the difference of the inner coupling matrices between any pair of nodes. For synchronizing a colored network onto a desired orbit with respect to the given matrices, open-plus-closed-loop controllers are designed. The closed-loop controllers are chosen as adaptive feedback and intermittent controllers, respectively. Based on the Lyapunov stability theory and mathematical induction, corresponding synchronization criteria are derived. Noticeably, many existing synchronization settings can be regarded as special cases of the present synchronization framework. Numerical simulations are provided to verify the theoretical results.  相似文献   

15.
严顺行  姜偕富  杨性序  葛晓华 《科技通报》2011,27(2):177-181,219
考虑了区间时变时滞模糊系统的稳定性问题.利用T-S模糊模型对模糊系统进行了研究,利用线性矩阵不等式的形式给出了此类模糊系统在时滞相关意义下保守性更小的稳定性判据.由于加入了自由矩阵,所得结果保守性更小.并且给出了一个数值例子说明了所得稳定性判据的有效性.  相似文献   

16.
The paper is concerned with the stability and stabilization problems for a family of hybrid linear parameter-varying systems with stochastic mode switching. The switching phenomenon is modeled by a semi-Markov stochastic process which is more generalized than a Markov stochastic process. With the construction of a Lyapunov function that depends on both the parameter variation and operating mode, numerical testable stability and stabilization criteria are established in the sense of σ-error mean square stability with the aid of some mathematical techniques that can eliminate the terms containing products of matrices. To test the effectiveness of the designed stabilizing controller, we apply the developed theoretical results to a numerical example.  相似文献   

17.
This paper investigates the problem for stability of neutral-type dynamical neural networks involving delay parameters. Different form the previously reported results, the states of the neurons involve multiple delays and time derivative of states of neurons include discrete time delays. The stability of such neural systems has not been given much attention in the past literature due to the difficulty of finding Lyapunov functionals which are suitable for stability analysis of this type of neural networks. This paper constructs a generalized Lyapunov functional by introducing new terms into the well-known Lyapunov functional that enables us to conduct a theoretical investigation into stability analysis of delayed neutral-type neural systems. Based on this modified novel Lyapunov functional, sufficient criteria are derived, which guarantee the existence, uniqueness and global asymptotic stability of the equilibrium point of the neutral-type neural networks with multiple delays in the states and discrete delays in the time derivative of the states. The applicability of the proposed stability conditions rely on testing two basic matrix properties. The constraints impose on the system matrices are determined by using nonsingular M-matrix condition, and the constraints imposed on the coefficients of the time derivative of the delayed state variables are derived by exploiting the vector-matrix norms. We also note that the obtained stability conditions have no involvement with the delay parameters and expressed in terms of nonlinear Lipschitz activation functions. We present a constructive numerical example for this class of neural networks to give a systematic procedure for determining the imposed conditions on the whole system parameters of the delayed neutral-type neural systems.  相似文献   

18.
Based on the generalized probability-interval-decomposition approach, the delay-dependent stability analysis for a class of T-S fuzzy systems with stochastic delays is investigated. The information of the probability distribution of stochastic delay is fully exploited and a series of sufficient stability criteria are obtained. A rigorous mathematical proof is provided that the conservatism of the proposed stability criteria can be reduced progressively by increasing the number of the probability interval. Based on this, a novel hierarchy of LMI conditions is established. It is rigorously proved that with the same decomposition of probability interval, the conservatism of the proposed stability criteria is less than the one obtained by time-varying delay decomposition approach. The computation burden of the proposed method is analyzed and compared with one of the time-varying delay decomposition approach. Finally, a numerical example is given to illustrate the validness and effectiveness of the proposed approach.  相似文献   

19.
In this paper, the problem of delay-dependent stability of a class of uncertain Lur’e systems of neutral type with interval time-varying state delay and sector-bounded nonlinearity has been considered based on Lyapunov–Krasovskii functional approach. By constructing a candidate Lyapunov–Krasovskii (LK) functional, less conservative robust stability criteria are proposed in terms of linear matrix inequalities (LMIs). The reduction in conservatism of the proposed stability criteria over recently reported results is attributed to the candidate LK functional used in the delay-dependent stability analysis, and to the tighter bounding of the time-derivative of the functional without neglecting any useful terms using minimal number of slack matrix variables. The proposed analysis, subsequently, yields a stability condition in convex LMI framework, and is solved non-conservatively at boundary conditions using standard numerical packages. The effectiveness of the proposed stability criterion is demonstrated through standard numerical examples.  相似文献   

20.
In this paper, we develop a matrix-based methodology to investigate the problems of stability and stabilizability for a deterministic finite automaton (DFA) in the framework of the semi-tensor product (STP) of matrices. First, we discuss the equilibrium point stability (resp., set stability) of a DFA, i.e., verifying whether or not all state trajectories starting from a subset of states converge to a specified equilibrium point (resp., subset of states). The necessary and sufficient conditions for verifying both stabilities are given, respectively. Second, equilibrium point stabilizability (resp., set stabilizability) of a DFA is investigated as verifying the issue of whether or not a DFA can be globally or locally stabilized to a specified equilibrium point (resp., subset of states) by a permissible state-feedback controller. Based on the pre-reachability set and invariant-subset defined in this paper, the matrix-based criteria for verifying equilibrium point stabilizability and set stabilizability are derived, respectively. Furthermore, for each type of stabilizability, all permissible state-feedback controllers for the case of minimal length state trajectories, called optimal state-feedback controllers, are characterized by using the proposed polynomial algorithms. Finally, two examples are presented to illustrate the effectiveness of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号