首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 625 毫秒
1.
湘西北壶瓶山自然保护区植物区系   总被引:1,自引:0,他引:1  
壶瓶山自然保护区具有丰富的植物区系成分,现知维管束植物有205科(蕨类和拟蕨类 植物40科,裸子植物7科,被子植物158科),839属,约1961种(包括154变种)。其中,古  和原始的科、属不乏其代表。从种子植物属的分布区类型的比较分析,该区具有我国15个种子植物属的分布区类型中的14个,表明了与世界各地区植物区系的联系程度。另一方面,该 地区的植物区系虽含有丰富的热带成分,但根据各类温带属占该区总属数的百分比以及分布于该地区的中国特有属中的木本属几乎所有都是落叶的乔木或灌木,该区的植物区系性质明显偏重于温带性质。而且,这种温带性质可能与该区的山体海拔高度有着重要的联系。  相似文献   

2.
    本文用数值分类的关联分析方法对国产荚蒾属 Viburnum  所有72种的分布式样进行     了研究,旨在为中国植物区系分区的工作提供若干依据。中国荚蒾属的遗传变异中心是在中     南部而不在南部或西南部的事实强烈地暗示这是一个亚热带性质的属。  四川西南部是西部     特有成分最密集的地区。尽管横断山脉地区地形复杂,但那里只有几种荚蒾属植物。台湾的     种主要是亚热带性质的,而且大多数与大陆的种相同。这些种的分布式样展示我国台湾在区     系地理上与我国大陆或甚至日本有着比马来西亚地区更密切的亲缘关系。  本文总的结论大     体上与吴征镒教授关于中国种子植物区系的分区相符,但在某些次要方面有所不同。作者还    讨论了种的分布式样与自然地理、气候和植被的联系。  相似文献   

3.
毛竹生产潜力很大且具有较高的经济价值,主要分布在四川长宁、江安、兴文等县。在统计毛竹林下维管植物种类数目的基础上,对该区维管植物区系进行了初步分析。研究结果表明:长宁毛竹林下维管植物共115种,分属54科98属,科属地理成分分析结果表明:这54科可划分为7个分布型和5个变型,其中以泛热带分布为主;98属可划分为13个分布型和4个变型,其中以泛热带分布、东亚和北美洲间断分布为主。因此,其区系地理成分复杂,以热带成分为主,但同时受到温带区系成分的影响,特有植物贫乏。  相似文献   

4.
以年楚河流域沼泽湿地种子植物为研究对象,通过野外调查结合室内分析对研究区域种子植物组成和地理区系特征等进行分析。年楚河流域沼泽湿地共统计到种子植物117种,隶属于76属,34科。本区沼泽湿地植物科的组成中,以单种科和小型科为主,其中菊科、禾本科、豆科、毛茛科、蔷薇科、龙胆科为优势科;科的地理区系组成上,世界广布型为主,其次为北温带和南温带间断分布和泛热带分布型。单种属和小型属是区域沼泽湿地植物属组成的主体,以温带分布和世界广布型为属的主要区系成分,中国特有属仅一属。研究地沼泽湿地种子植物生活型以多年生草本和一年生草本为主,种子植物资源类型丰富,其中药用植物物种数最多,占总物种数的56.41%.  相似文献   

5.
锦鸡儿属Caragana是一个典型的温带亚洲分布属。本属在青藏高原和喜马拉雅约有24种1变种,约占整个属的1/3。这些种类几乎全部处于演化高级阶段,且既有叶轴宿存类群,也有假掌状叶类群。反映出种的分化很活跃,在横断山地区形成本属的分布中心、分化中心。本区内绝大多数种类是特有分布。替代现象主要受气候、植被变化作用,沿横断山和喜马拉雅分布的长齿系Ser. Bracteolatae Kom.是一个典型的替代分布类群。锦鸡儿属植物生态适应性很强,可在其生长的灌丛中形成优势种。 寒化和旱化现象十分突出,它们有一系列森林种、草原种和荒漠种及相关的形态变异。用锦鸡儿属植物进行青藏高原和喜马拉雅区域内的分布区关系分析及最小生成树MST和特有性简约性分析(PAE),表明横断山地区特别是其北部是本属植物的一个地理结点。以此沿横断山向北部唐古特和西部藏东南适应性辐射。横断山和西喜马拉雅联系微弱,看不出植物长距离扩散的踪迹,大多是由于生态因子限制而产生的隔离。虽然本区不可能是锦鸡儿属的起源地,然而,通过本区与邻近地区的地理联系,可推测它们在我国适应性辐射方向是从东北向西南。结合豆科蝶形花亚科其它属化石记录及其分布区局限在温带亚洲等现象,认为锦鸡儿植物是一组特化、晚近衍生的类群,起源于北方东西伯利亚晚第三纪中新世后期至上新世。  相似文献   

6.
通过半个世纪以来对金佛山近2000号藓类植物标本的鉴定,现确定金佛山藓类植物有40科,133   属和245种(包括4亚种、9变种和1变型)。其区系成分以东亚成分为主(33.77%),其次为温带成分   (28.57%)及热带、亚热带成分(24.68%)。文内还全面分析了金佛山藓类植物区系及我国南北8个山区藓   类植物区系之间的关系,用排序方法统计它们之间的相似性与非相似性系数,并着重就金佛山藓类植物区  系的过渡性特点作了探讨,提出在该山区与其邻近地区,存在一个苔藓植物东亚特有属的分布中心。  相似文献   

7.
本文根据植物类群的系统发育和地理分布统一的原理,讨论了獐牙菜属植物的起源、散布和分 布区的形成。獐牙菜属包括11组16系154种,间断分布在亚洲、欧洲、北美洲和非洲。中国西南部- 喜马拉雅地区汇集了大多数种类、不同演化水平的类群以及形形色色的特有类群,成为该属的多样化 中心和多度中心。该属的原始类群和外类群也集中分布在中国西南山地,极有可能是该属的起源地。该 属的分布区类型中出现了各式的间断分布,根据有该属植物分布的大陆间及大陆与岛屿间分离和连接 的时间推测,该属的起源时间至少不会晚于晚白垩纪,也许更早,可追溯到中白垩纪。通过分类群间亲 缘关系和现代分布分析,显示出该属植物从起源地向周围和一定方向散布,形成了三个主要散布途径。在散布过程中植物本身也发生演化和就地特化,形成新的类群。  相似文献   

8.
 台湾位于欧亚大陆东南缘的海洋中,地处热带的北部和亚热带的南部,约为21°45′~15°56′N,119°18′~124°34′E,是中国最大的岛屿。它是受季风气候强烈影响的地区之一,热量丰富,雨量充沛,干湿季明显。具有一个非常丰富的岛屿和山区植物区系。就其种子植物而言,约有186科,1201属,3656 种,包括热带属742属,温带属346属。根据台湾植物区系中各大科、主要植物群落优势种和中国特有种的地理分布以及热带属在整个植物区系中的主导地位,台湾地区的植物区系主体具有明显的亚热带性质。中国台湾本地特有种十分丰富,其比例远高于中国特有种的比例。这似乎表明台湾植物区系是一个古老区系在多次地质事件侵袭后又起活化的历史演变的结果。新老成分并存、共同发展是台湾植物区系的重要特点。通过台湾全部属和非特有种在周边地区地理分布的分析,中国台湾植物区系与中国大陆的关系最为密切,是东亚植物区系的重要组成部分,因此在植物分区上应属于泛北极植物区的东亚植物区系。  相似文献   

9.
以西藏拉萨市当雄县阿热湿地作为研究地点,通过野外调查和室内分析,对该湿地种子植物科、属组成和植物区系特征进行了分析。结果表明,阿热湿地共记录了129种种子植物,隶属32科,85属,分别占西藏种子植物科、属和种总数的15. 38%、6. 63%、2. 03%.该湿地种子植物科的组成中,菊科、莎草科、豆科为优势科;中型属和单种属是组成本区种子植物的主体。该湿地种子植物分布区类型分析结果显示,在科的分布区类型中世界广布的科占优势,占本区总科数的75. 00%;在属的分布区类型中北温带和世界广布的属占优势,分别占本区总属数的35. 29%和22. 35%.  相似文献   

10.
兰科在横断山地区是维管束植物中的大科之一,共有91属,363种及9变种。 4属为我国特有属,其中1属为本地区所特有;155种及9变种为我国特有种。  其中69种及5变种为本地区所 特有。本文对属、种进行了分析,并对全部种的分布格局作了详细的介绍,概述了本地区兰科植物的区系组成及特点。本文从兰科植物属、种的分布提出了四川峨眉山是东亚植物区中划分中国-喜马拉雅植物亚区和中国-日本植物亚区的分界线上的一个重要的点的看法。  相似文献   

11.
选择我国亚热带区域76个地区(不包括行政单元)的植物区系调查和研究资料,采用主成分分析 (PCA)、TWINSPAN聚类和样带梯度分析方法,研究了我国亚热带区域植物区系地理成分的构成特征和 各成分之间的关系;各研究区域间植物区系地理成分构成的相关性和空间分异特征;并分析了贯穿我国亚热带区域的东经108.5°~111.5°和北纬29°~31°两条样带的几种区系地理成分的分布梯度。结果表明:①15种区系地理成分可以归为热带成分、温带成分、干旱区成分和东亚中心成分4组;我国亚热带各地区区系地理成分中泛热带和北温带分布的比例最高;干旱区分布诸类比例极小;东亚中心成分的比例突出,特有性强;②样点的PCA排序明显反映了北、中、南亚热带在区系地理成分构成上的差异,但亚热带东西部的差异不明显;③样带分析清晰地反映了热带、温带成分之比的梯度格局;川东鄂西地区特有分布中心的地位和世界分布与特有成分相反的分布格局。  相似文献   

12.
鄂西神农架地区的植被和植物区系   总被引:1,自引:0,他引:1  
 Shennungia is generally known as “The highest mountain in Central China”. It is situated at latitude 31°342'N., longitude 110°35'E. in western Hupeh.       The area explored is deeply cut in all sides by five V-shaped valleys, giving the landscape a steep topography.  Its summit is about 3105 meters above the sea level, and the relative altitude is from 1000-2000 meters.      The climate of the region is warm temperate.  The differences of humidity-warmth condition between the eastern and the western flanks are quite marked.      In western Hupeh and the adjacent area of Szechuan the rugged topography still preserves some tracts of natural forests at higher elevations.  Our vegetational survey is confined to localities above 1500 meters. The collection of plant samples of the flora is extended to the whole mountain from the foothill to the peak.  The present article deals with only a part of the results of our survey.      1.  The vertical vegetation belts of Mt. Shennungia and relationships with other regions:  The vegetation belts on the eastern and the western flanks of the mountain are shown in diagram 2 and 3.  The comparison of the vertical vegetation zones of the Mt. Shennungia with those of the Yülungshan in N. W. Yunnan and the eastern Himalaya to the west and with those of Hwangshan and Central Japan to the east is shown in table 4, It shows that the plant communities of the Mt. Shennungia are of temperate nature, and they are more closely related to those of Hwangshan in S. Anhwei and of Central Japan than to the eastern Himalaya.      2.  Floristic composition: The generic ranges of flowering plant are relatively distinct and stable. Various distributional patterns of genera are analysized.      1)  Statistics of the genera in various distributional patterns: The total number of genera of flowering plants in this region are 762, belonging to the following four categories. A) tropical genera 239 (31.3%), B)  temperate  genera  416 (54.7%),  C) endemic genera 47 (6%), and D) comsmopolitan genera 61 (8%).       2)  Endemic genera:  An examination of the composition of the flora in western Hupeh reveals that 47 endemic Chinese genera occur in this mountain of which 24 are monotypic genera, 20 oligotypic and 2 multitypic as shown in Table 4. The arborescent genera are nearly all deciduous. They are of temperate nature.       3)  Temperate genera:  There are 416  genera in  wastern Hupeh.  They  are subdivides into the following three groups according to their distributional patterns: A)  The north temperate genera: There are 159 genera belonging to 62 families in western Hupeh. B)  Eastern Asian genera:  There are 117 genera belonging to 69 families in western Hupeh.  Among them 22 are common to the western Szechuan, adjacent regions of Yunnan and the Eastern Himalaya.  The remaining 95 genera are commom to both eastern China and Japan. C) The Eastern Asian-eastern North- American genera:  Of the total 762 genera known in western Hupeh, 64 are disjunc- tively distributed in both eastern Asia and eastern North-America.       4)  The tropical genera: Of the 762 genera of the flowering plant of western Hupeh, 239 (31%) are of tropical nature.       Finally, our survey shows:  1. Many of the primitive temperate genera and ende- mic relicts concentrate in western Hupeh and the adjacent region of Szechuan indica- ting that it might be one of refuges of tertiary flora. Moreover, it might also be one of the most important regions of differentiation, development and distribution of tem- perature flora. 2.  The vegetation of this region is not only of temperate nature, but also of a transitional nature. 3.  According to an analysis of the flora and a compari- son of the vertical distribution of the vegetation of Yülungshan and Eastern Himalaya to the west with Hwangshan and Central Japan to the east, the floristic affinity of western Hupeh is more closely related to eastern China and Central Japan rather than to the Eastern Himalaya, and phytogeographically this region is intermediate between the Sino-Himalayan and the Sino-Japanese patterns.  However, the problem of phyto- geography of western Hupeh and the adjacent region of Szechuan is a complicated one requiring further study.    相似文献   

13.
 秦岭是中国长江和黄河两大水系的分水岭,位于北纬32°5′至34°45′;东经104°30′至115°52′,最高峰达3767m。该山区是我国温带植物区系最丰实的地区之一,约有种子植物3124种,隶属于158科,892属。包括热带属220属,温带属563属,和中国特有属39属。根据该山区植物区系中各大科、主要植物群落优势种和组成种类的温带性质以及温带属在整个植物区系中的主导地位。该山区的植物区系和植被具有明显的温带性特点。特有种和非特有种的分析结果表明,该山区植物区系的特点还表现在高度特有性和以中国-日本森林植物区系为主体方面。    根据古植物学资料分析,秦岭地区植物区系的起源时间不会晚于晚白垩纪;植物群落的主要成份可能以原地生长的种类为主;秦岭及其邻近古老山区,不仅对自身的植物区系和植被具有较大的发生意义,而且对东亚植物区系具有始生性质。  相似文献   

14.
中国种子植物特有属的数量分析   总被引:3,自引:0,他引:3  
Chinese flora with many endemic elements is highly important in the world’s flora. According to recent statistics there are about 196 genera of spermatophytes, be- ing 6.5% of total Chinese genera.  These endemic genera comprising 377 species belong to 68 families, among which the Gesneriaceae (28 genera), Umbelliferae (13), Compo- sitae (13), Orchidaceae (12) and Labiatae (10) are predominant.  The tropical type containing 24 families and 80 genera is dominant. After it follows the temperate type with 23 families and 50 genera.  There are also 4 families endemic to China, i.e. Gin- kgoaceae, Bretschneideraceae, Eucommiaceae and Davidiaceae.  It shows that genera endemic to China are obviously related to the tropical and temperate flora in essence.      The endemic monotypic genera (139) and endemic obligotypic genera (48) combin- ed make up more than 95% of the total number of genera endemic to China.  Phylo- genetically more than half of them are ancient or primitive.  The life forms of all ende- mic genera are also diverse.  Herbs, especially perennial herbs, prevail with the propor- tion of about 62%, and trees and shrubs are the next, with 33%, and the rest are lianas.       Based upon the calculated number of genera endemic to China in each province and the similarity coefficents between any two provinces, some conclusions may be drawn as follows:       Yunnan and Sichuan Provinces combined are the distribution centre of genera en- demic to China and may be their original or  differentiation area,  because  numerous endemic genera, including various groups, exist in these two provinces.  The second is Guizhou where there are 62 endemic genera.  Others form a declining order, south China, central China and east China. But towards the north China endemic genera de- crease gradually, and the Qinling Range is an important distributional limit.       The largest simitarity coefficient, over 50%, appears between Shaanxi and Gansu probably because of the Qinling Range linking these two provinces.  But between any other two provinces it is less than 30% and it is generaly larger between two south pro- vinces than between two north provinces.       These characteristics mentioned above are correlated with topography and climate, and they may be resulted from the diversification in geography and climatic influence for a long time.  相似文献   

15.
本文结合地史初步探讨了第三纪以来武夷山苔藓植物可能发生的变化。武夷山的苔藓     植物主要为东亚区系成分和旧热带区系成分,与泛北极区系成分的相似性也相当明显。东亚     特有属(5个)系组成武夷山苔藓植物区系的重要因素之一,它低于黄山和西天目山的9个和     7个,与黄山等组成一个共同的苔藓植物东亚特有属的分布中心。从各方面的分析推测,这    类植物可能起源于第三纪,系一类“孑遗植物”。  相似文献   

16.
The genus Burmannaia is one of the largest genera in the Burmanniaceae, of which 12 species have been recorded in China.  It is mainly a tropical genus.  The species in China are all confined to the region south of Yangtze River. They are distributed chiefly in the provinces Guangdong (9 species) and Yunnan (6 species). After having studied the areas of all the species in China, we are able to classify them into follow- ing 4 area-types:      1.  Area-type of Tropical Asia to Tropical Australia. The two non-saprophytic species (Burmannia disticha, B. caelestis) and one saprophytic (B. championii) belong to this area-type.  It is an ancient type.  The plants of this type mostly have a wide ecological amplitude, for example, B. disticha may be found in tropical and subtropical regions.  The plants occur not only in evergreen forests, in bushs, but also in rather arid herbosa and on the side of streams (Fig. 2).     2. Area-type of Tropical SE Asia.  In the type are 3 saprophytic species i.e. B. oblonga, B. wallichii and B. nepalensis.      3. Area-type of E. Asia.  (Fig. 3) Burmannia in China with E. Asian distribu- tion is poor in species.  There are only 2 saprophytic species. B. cryptopetala is distri-buted in Haina (China), Kyushu and Honshu (Japan); B. itoana occurs in Taiwan (China), Riukiu and Kyushu (Japan).  They are known only on the islands of E. Asia. Such a pattern of distribution may suggest connection of these islands once in the prehistoric time in spite of their present isolation.      4.  Endemic area-type. (Fig. 4).  Here are 3 saprophytic species and one variety with green leaves.  B. nana occurs only in E. Taiwan.  One of the two new species described by present author in this paper, B. fadouensis, is known from Xichou Xiao, S. E. Yunnan, to Longzhou Xian of the province Gaunxi; the other one, B. pingbien- ensis occurs only in Pinbien Xian of S. E. Yunnan. The last species is endemic to China. B. pusilla var. hongkongensis is non-saprophytic and known from the province Guang- dong and its bordering islands.  Both B. fadouensis and B. pingbienensis are characte- rized by the axillary bulbils, which enable them to adapt to rather arid and cold condi-tions in northern part of the tropical region.  相似文献   

17.
 Xizang (Tibet) is rich in Leguminosae flora, comprising 41 genera and 254 species so far known, exclusive of the commonly cultivated taxa (including 11 genera and 16 species). There are 4 endemic genera (with 8 species), 10 temperate genera (with 175 species) and 19 tropical genera (with 46 species) as well as the representatives of those genera whose distribution centers are in East Asia-North  America, Mediterranean and Central Asia.       1.  There are altogether 4 endemic genera of Leguminosae in this region. Accord- ing to their morphological characters, systematic position and geographical distribution, it would appear that Salweenia and Piptanthus are Tertiary paleo-endemics, while Straceya and Cochlianths are neo-endemics. Salweenia and Piptanthus may be some of more primitive members in the subfamily Papilionasae and their allies are largely distributed in the southern Hemisphere.  The other two genera might have been derived from the northern temperate genus Hedysarum and the East Asian-North American genus Apios respectively, because of their morphological resemblance. They probably came into existanc during the uplifting of the Himalayas.       2. An analysis of temperate genera       There are twelve temperate genera of Leguminosae in the region, of which the more important elements in composition of flora, is Astragalus, Oxytropis and Cara- gana.       Astragalus  is a  cosmopolitan  genus comprising 2000 species, with its center distribution in Central Asia. 250 species, are from China so far known, in alpine zone of Southwest and Northwest, with 70 species extending farther to the Himalayas and Xizang Plateau.       Among them, there are 7 species (10%) common to Central Asia, 12 species (15.7%) to Southwest China and 40 species (60%) are endemic, it indicates that the differentia- tion of the species of the genus in the region is very active, especially in the subgenus Pogonophace with beards in stigma. 27 species amounting to 78.5% of the total species of the subgenus, are distributed in this region.  The species in the region mainly occur in alpine zone between altitude of 3500—300 m. above sea-level. They have developed into a member of representative of arid and cold alpine regions.      The endemic species of Astragalus in Xizang might be formed by specialization of the alien and native elements. It will be proved by a series of horizontal and vertical vicarism of endemic species.  For example, Astragalus bomiensis and A. englerianus are horizontal and vertical vicarism species, the former being distributed in southeast part of Xizang and the latter in Yunnan; also A. arnoldii and A. chomutovii, the former being an endemic on Xizang Plateau and latter in Central Asia.      The genus Oxytropis comprises 300 species which are mainly distributed in the north temperate zone. About 100 species are from China so far known, with 40 species extending to Himalayas and Xizang Plateau.  The distribution, formation and differ- entiation of the genus in this region are resembled to Astragalus.  These two genera are usually growing together, composing the main accompanying elements of alpine mea- dow and steppe.      Caragana is an endemic genus in Eurasian temperate zone and one of constructive elements of alpine bush-wood. About 100 species are from China, with 16 species in Xi- zang. According to the elements of composition, 4 species are common to Inner Mon- golia and Kausu, 4 species to Southwest of China, the others are endemic. This not only indicates that the species of Caragana in Xizang is closely related to those species of above mentioned regions, but the differentiation of the genus in the region is obviously effected by the uplifting of Himalayas, thus leading to the formations of endemic species reaching up to 50%.      3. An Analysis of Tropical Genera      There are 19 tropical genera in the region. They concentrate in southeast of Xizang and southern flank of the Himalayas. All of them but Indigofera and Desmodium are represented by a few species, especially the endemic species. Thus, it can be seen that they are less differentiated than the temperate genera.      However, the genus Desmodium which extends from tropical southeast and northeast Asia to Mexio is more active in differentiation than the other genera. According to Oha- Shi,s system about the genus in 1973, the species of Desmodium distributed in Sino-Hima- laya region mostly belong to the subgenus Dollinera and subgenus Podocarpium.  The subgenus Dollinera concentrates in both Sino-Himalaya region and Indo-China with 14 species, of which 7 species are endemic in Sino-Himalaya.  They are closely related to species of Indo-China, southern Yunnan and Assam and shows tha tthey have close con- nections in origin and that the former might be derived from the latter.      Another subgenus extending from subtropical to temperate zone is Podocarpium. Five out of the total eight species belonging to the subgenus are distributed in Sino- Himalaya and three of them are endemic.      An investigation on interspecific evolutionary relationship and geographic distribu- tion of the subgenus shows that the primary center of differentiation of Podocarpium is in the Sino-Himalaya region.      Finally, our survey shows that owing to the uplifting of the Himalayas which has brought about complicated geographic and climatic situations, the favorable conditions have been provided not only for the formation of the species but also for the genus in cer-tain degree.  相似文献   

18.
中国樟科植物的地理分布   总被引:1,自引:0,他引:1  
 From the study of the geographical distribution of Chinese lauraceous genera and species, we may concludely obtained some results as follows:      1)  Lauraceous family is a pantropical one in distribution, sometimes it may be reached to the subtropical or temperate zone.  There are 18 genera in China natively. Among them 17 genera are of the tropical distribution-pattern.  The tropical Asia dis- tribution-pattern, i.e. Indo-malaysian distribution-pattern, is the nucleus of Chinese lauraceous flora.  Only 1 genus is of temperate distribution-pattern, i.e. the East Asia- North America distribution-pattern. From the analysis of the primitive forms and the concentration of species in these genera, we may regard that:  a)  All genera of the tropical distribution-pattern were originated at Gondwana in the past period.  South- western and Southern China may be the birth-land of some genera of tropical distribu- tion-pattern because it was the northern boundary of Gondwana in the past period. b)  The genus of temperate distribution-pattern may be originated in the montane region of Western or South-western China.       2)  Yunnan, Guangdong, Guangxi and Sichuan are the provinces having laura- ceous species in abundance. But the provinces having lauraceous endemic species in abundance are Yunnan, Guangdong, Taiwan,, Guangxi and Sichuan. In general Chinese lauraceous plants are distributed mainly in south-western and southern parts of China. The southeastern and southern parts of province Yunnan are of great abundance in lauraceous species or endemic species.  The species amount of lauraceous species in these two parts of Yunnan is 67.3% of the total species amount of the lauraceous flora in that province.  It may be explained by the fact that a) where it is of existence of primary forest, b)of great specific endemism in the rocky region and c)  the passway in migration of lauraceous plant from east to west or reverse.      3)  The great similarity of lauraceous flora  between  Yunnan  (especially  its western or north-western part) and Xizang (especially its southern or south-eastern part), as well as between Guangdong and Guangxi, may be exhibited by the background in perfect harmony of each own flora with environment in the past period.  The en- demism of lauraceous flora in Taiwan and Hainan is manifest from the standpoint of island's isolation.  But the latter is of a more manifest one, because it is situated at the southern latitude and is more adaptive to the development of lauraceous plant.       4)  The deciduous species of lauraceous plant which are the principal elements in the flora of subtropical or temperate zone, are mainly of inland distribution-pattern. Their geographical distribution are more concentrated  at  the  montane  region  of Western or South-western China.  Where it may be the birth-land of the subtropical or temperate lauraceous species, or even of the whole temperate flora.      相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号