首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
递推数列是指以递推公式的形式给出的数列.求递推数列通项在近几年的高考题中屡见不鲜.下面介绍几类常见的递推数列的通项公式的求法.  相似文献   

2.
众所周知,利用递推公式给出的数列称为递推数列.本文归纳总结出求递推数列通项的常用方法,并拟例说明,以供参考.  相似文献   

3.
求递推数列的通项公式,是近年来高考的热点问题,属于常考题型之一.本文从一道高考题人手,多角度探讨an+1=pan+q^n型通项公式的求法.  相似文献   

4.
数列问题中,我们会碰到由各种各样递推关系给出的数列。求这类数列的通项公式的方法也不少,但其中有一类数列我们经常碰到,  相似文献   

5.
已知数列的递推公式求其通项公式是数列中一类常见的题型,其解题方法灵活多变,构造的技巧性强,有一定的规律可循,存在解决问题的通性通法.  相似文献   

6.
7.
数列的通项公式是数列的灵魂,通项公式一定,数列就随之而定。可是有些数列有通项公式且不唯一,有些数列没有通项公式。如果数列有通项公式,则如何来求数列的通项公式呢?以下是几种求数列通项公式的方法:  相似文献   

8.
求数列通项既是高考的热点又是难点,本文结合2007年高考题谈谈数列通项的常见求法.  相似文献   

9.
2006年高考江西卷第22题为:已知数列{a_n}满足:a_1=3/2,且 a_n=(3na_(n-1))/(2a_(n-1) n-1)(n≥2,n∈N~*).(1)求数列{a_n}的通项公式;(2)证明:对一切正整数 n,不等式 a_1a_2…a_n<2·n!成立.显然,求解本题的关键之一是根据已知 a_n与 a_(n-1)(或 a_n与 a_(n 1))的递推关系式,能寻找出 a_n 的表达式.这是近年高考中比较多见的一种题型.由于已知关系式的形式不同,其解法也不尽相同.如本题的通项 a_n 求法为:将条件变  相似文献   

10.
高中数学中的通项公式是历年高考中常考的问题,也是学生感到棘手的问题,在数列求和、极限中也经常用到通项公式,现就将数列通项公式的几种常用的求法介绍于下:  相似文献   

11.
求数列通项,是数列问题的一个重要题型,方法灵活多变,我们必须做到具体问题具体分析。通项求法知多少,让我们一起走进数列通项求法“大观园”.  相似文献   

12.
数列是高中数学的重要内容之一.故在高考中占有重要的地位,而求数列的通项又是高考试题中常见的题型.本就数列通项的常用求法作一归纳,供老师、同学们参考。  相似文献   

13.
数列是高中代数的重要内容之一,数列的通项是解数列题的突破口、关键点.笔者就数列通项的求法归纳如下,仅供同学们参考。  相似文献   

14.
数列是数学的重要内容之一,也是初等数学与高等数学的衔接点。而数列的通项公式又是研究、探讨数列问题的重要渠道。通项公式给出了数列{an}中第n项an与项数n之间的函数关系,对于一个数列,  相似文献   

15.
数列在理论上和实践中均有较高的价值,是培养学生观察能力、理解能力、逻辑思维能力的绝好载体,高考对数列知识的考查在20世纪80年代末发展到了极致,以后逐渐冷落,但最近几年又逐渐升温,随着与大学知识的接轨,竞赛题的释放,很多省市的高考数学卷都把数列题作为压轴题,而数列通项公式的求法又成为一个热点.本文想总结一下,在高中阶段,求数列通项公式的常用方法和策略.  相似文献   

16.
文[1]介绍了具有递推关系“an+1=an+f(n)”的数列通项公式的求法,其分析思路如下(原文):这种类型的递推数列,只需要将关系式转化为an+1-an=f(n),然后将n=1,2,…,n-1代入,  相似文献   

17.
类型一 a(n 1)-an=f(n)。  相似文献   

18.
在数学教学中,数列的通项是一个重要的问题,同时又是学生需要掌握的难点,本文着重介绍几类递推数列的通项公式的求法,以供各位同行探讨.  相似文献   

19.
徐建祥 《新疆教育》2011,(12):69-70
1定义法 直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目。  相似文献   

20.
数列问题中一个很重要的思想是把数列的通项公式或递推公式变形,然后将它看成新数列(通常是等差或等比数列)通项公式或递推公式,最后用新数列的性质解决问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号